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Abstract— Causal modeling is an intuitive, declarative 

way of modeling. Due to the universal character of causality, 

in principle it applies to practically all disciplines. In spite of 

this seemingly very wide scope of applicability, there are also 

serious limitations and challenges that stand in the way of 

applicability. This concerns in particular cases where 

dynamics and adaptivity play a role. This paper addresses 

these challenges by exploiting the notion of self-modeling 

network that has been developed from a Network Science 

perspective. Adaptivity is obtained by adding to a given 

causal base network, a self-model which represents part of 

the base network’s causal structure. Moreover, this 

construction can easily be iterated so that multiple orders of 

adaptation can be covered as well. This indeed takes causal 

modeling to a next level in more than one way. Therefore, in 

this way dynamics and adaptivity are also covered well, 

which substantially widens the scope of applicability of 

causal modeling. 

Keywords— causal modeling, self-modeling network, 

network reification, adaptive social network, controlled 
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I. INTRODUCTION 

Causal modelling provides a declarative approach that 
has a long tradition in Artificial Intelligence; e.g., [1-4]. 
One of the challenges, however, is that causal modelling 
involving cyclic paths in causal graphs poses difficulties; 
therefore many approaches to causal modelling limit 
themselves to Directed Acyclic Graphs (DAG’s). More in 
general, to avoid temporal complexity, dynamics is often 
not addressed in approaches based on causal networks, 
neither for the causal effects on nodes, nor for the network 
structure itself. The difficulty to allow cyclic paths in a 
causal network is one consequence of this form of 
abstraction from dynamics of the nodes in a causal 
network. Another consequence of abstracting from 
dynamics is that distinctions in timing and asynchrony of 
causal effects (i.e., how fast causal effects actually are 
effectuated) cannot be made, whereas often such 
differences in timing and asynchrony are crucial for real-
world processes modelled by a causal network. Finally, 
within causal models, not only the nodes but also the 
causal relations are usually considered static, they cannot 
change over time. This excludes many adaptive real-world 
processes from the scope of applicability for causal 
modeling. 

In the meantime, working from the perspective of 
Network Science, new approaches have been developed 
that can be used to overcome the above-mentioned 
limitations of causal modeling. In particular, in this paper it 
will be addressed how both within-network dynamics 
(dynamics of the node states) for causal network models 

and adaptivity of the causal relations can be addressed 
using the network-oriented modeling approach developed 
in [5-7].  

Using this approach as introduced for within-network 
dynamics in [5], the dynamic perspective is based on a 
continuous time dimension, represented by real numbers, 
so that all nodes have state values (also represented by real 
numbers) that vary over time. The added temporal 
dimension enables modelling by cyclic causal networks as 
well, and also timing of causal effects can be modelled in 
detail and differently per node, so that also asynchronous 
processes are covered. Due to this, causal modeling can be 
used for causal networks that contain cycles, such as many 
networks modelling mental or brain processes, or networks 
describing social interaction processes (for example, in 
social media). Moreover, in [5, 7] it is shown how – 
supported by a dedicated software environment – networks 
with these within-network dynamics can be specified by 
declarative means, by mathematical relations and 
functions; the modeler does not need to address procedural 
descriptions nor program code. 

In addition to these within-network dynamics, another 
useful element from the network-oriented modeling 
perspective is the notion of self-modeling network or 
reified network introduced in [6-8]. This is a network that 
includes a self-model for part of its own network structure 
in the form of nodes that represent certain network 
structure characteristics such as connection weights or 
excitability thresholds. Any (base) network can be 
extended by including such a self-model, which can be 
considered to be at a next level, compared to the base 
network; this step is also called network reification; e.g., 
[6-8]. This construction for networks in particular was 
inspired by another long-standing tradition in AI, namely 
that of meta-programming and metalevel architectures; 
e.g., [9-13]. Having such self-models within a network 
enables to model adaptation of the network structure by the 
within-network dynamics of the self-model representing 
this network structure. As the latter can be specified by 
declarative means in the form of mathematical relations 
and functions, also adaptivity of the network structure can 
be specified in a similar declarative manner. To support the 
modeler, a dedicated software environment (described in 
[7], Ch 9) is available that also applies to self-modeling 
networks. 

In this paper, the perspective pointed out above will be 
illustrated in more detail. First in Section 2 the network-
oriented modeling approach based on self-modeling 
networks will be briefly introduced. Next, in Section 3 it 
will be illustrated for an example of a multilevel second-
order adaptive causal (social) network model for bonding 
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by (faked) homophily, while in Section 4 an example of a 
simulated scenario for this model is described. Finally, 
Section 5 is a discussion. 

II. MODELING ADAPTIVITY BY SELF-MODELING 

NETWORKS 

In this section, the network-oriented modeling 
approach by self-modeling networks used is briefly 
introduced in two steps.  

A. Network-Oriented Modeling by Temporal-Causal 

Networks 

As in this approach nodes Y in a network have 
activation values Y(t) that are dynamic over time t, they 
serve as state variables and will usually be simply called 
states. For these dynamics, the states are considered to 
affect each other by the connections within the network; 
therefore these connections are interpreted here as causal 
relations. This has been inspired partly by how in 
Philosophy of Mind networks of mental states and their 
causation relations are described; e.g., [14]. In line with 
this, following [5, 7], a basic temporal-causal network 
structure is characterised by: 

• Connectivity characteristics  

Connections from a state X to a state Y and 

their weights X,Y  

• aggregation characteristics  

For any node Y, some combination function 

cY(..) defines aggregation that is applied to the 

impacts  on Y from its incoming 

connections from states   

• timing characteristics  

Each state Y has a speed factor Y defining 

how fast it changes for given causal impact  
 

Here, the states Xi and Y have activation levels Xi(t) and 
Y(t) that vary (often within the [0, 1] interval) over time, 
described by real numbers t. These dynamics are described 
by the following difference (or differential) equations that 
incorporate in a canonical manner the network 

characteristics X,Y, cY(..), Y:  

   (1) 

for any state Y and where  are the states from 
which Y gets its incoming connections. The equations (1) 
are useful for simulation purposes and also for analysis of 
properties of the emerging behaviour of temporal-causal 
networks. The overall combination function cY(..) for state 
Y is taken as the weighted average of some of the available 

basic combination functions cj(..) by specified weights j,Y, 
and parameters ,  of cj(..), for Y:  

cY(V1, …, Vk)  =      (2) 

Such equations (1), (2) are hidden in the dedicated 
software environment that can be used for simulation and 
analysis; see [7], Ch 9. This software environment is freely 
downloadable from URL 

https://www.researchgate.net/project/Network-
Oriented-Modeling-Software. 

Combination functions are similar to the functions used 
in a static manner in the deterministic Structural Causal 
Model perspective described, for example, in [3, 4, 15]. 
However, in the Network-Oriented Modelling approach 
described here they are used in a dynamic manner. For 
example, Pearl [3], p. 203, denotes nodes by Vi and 
combination functions by fi (although he uses a different 
term for these functions). In the following quote he points 
at the issue of underspecification concerning aggregation 
of multiple connections, as in the often used graph 
representations the specification of combination functions 
fi for nodes Vi, is lacking: 

‘Every causal model M can be associated with a 
directed graph (…) This graph merely identifies the 
endogeneous and background variables that have a direct 
influence on each Vi; it does not specify the functional 
form of  fi.’ [3], p. 203 

Therefore, in addition to graph representations for 
connectivity, at least aggregation in terms of combination 
functions has to be addressed, as indeed is done for 
temporal-causal networks, in order to avoid this problem 
of underspecification. That is the reason why aggregation 
in terms of combination functions is part of the definition 
of the network structure for temporal-causal networks, in 
addition to connectivity in terms of connections and their 
weights and timing in terms of speed factors. 

As part of the software environment, a large number > 
35 of useful basic combination functions are included in a 
Combination Function Library, and also a facility to easily 
indicate any function composition of any available basic 
combination functions in the library. One of the 
combination functions from this library used for states Y in 
the example network model described in Section 3 is: 

the Euclidean combination function eucln,(V1, …, Vk)  

defined by 

eucln,(V1, …, Vk)  =    (3) 

where n is the order and  a scaling factor and V1, …, 
Vk are the impacts from the states from which the 
considered state Y gets incoming connections. 

In Section 3, it will be explained in more detail how the 
combination function eucln,(…) is used to model social 

contagion. Social contagion makes that states of connected 
persons such as emotions or opinions, causally affect each 
other; e.g., (Levy and Nail, 1993).   

 The above concepts (the characteristics X,Y, j,Y, 

i,j,Y, Y) enable to design network models and their 
dynamics in a declarative manner, based on 
mathematically defined functions and relations for them. 

Note that for each state Y, all characteristics X,Y, j,Y, i,j,Y, 

Y mentioned above causally affect the activation level of 
Y, as also can be seen from equations (1) and (2). Each of 
these characteristics do that causing in their own way from 
a specific role, either for connectivity, for aggregation or 
for timing. Below, this observation will also turn out useful 
in the context of self-models to address adaptivity.  
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B. Using Self-Modeling Networks to Model Adaptive 

Networks 

Realistic network models are usually adaptive: often 

some of their network characteristics X,Y, j,Y, i,j,Y, Y 
change over time. For example, for mental networks often 
the connections are assumed to change by hebbian learning 
[16] and for social networks, it is often assumed that 
connections between persons change through a bonding by 
homophily principle [17-19].  

Adaptive networks are often modeled in a hybrid 
manner by considering two different types of separate 
models that interact with each other: a network model for 
the base network and its within-network dynamics, and a 
numerical model for the adaptivity of the network structure 
characteristics of the base network. The latter dynamic 
model is usually specified in a format outside the context 
of network modeling: in the form of some adaptation-
specific procedural or algorithmic programming 
specification used to run the difference or differential 
equations underlying the network adaptation process.  

In contrast, by including self-models, a network-
oriented conceptualisation similar to what was described 
above, can also be applied to adaptive networks to obtain a 
declarative description using mathematically defined 
functions and relations for them as well; see [6, 7]. This 
works through the addition of new states to the network 
(called self-model states) which represent network 
characteristics by network states. Then the causal impacts 
of these characteristics on a state Y as mentioned above can 
be modelled as causal impacts from such self-model states. 
This brings the causal impacts from these characteristics 
on a state Y in the standard form of a causal model where 
via causal connections nodes affect other nodes. 

More specifically, adding a self-model for a temporal-
causal base network is done in the way that for some of the 
states Y of the base network and some of the network 
structure characteristics for connectivity, aggregation and 

timing (i.e., some from X,Y, j,Y, i,j,Y, Y), additional 
network states WX,Y, Cj,Y, Pi,j,Y, HY (self-model states or 
reification states) are introduced and connected to other 
states: 

a) Connectivity self-model 

• Self-model states WX,Y are added representing 

connectivity characteristics, in particular 

connection weights X,Y 

b) Aggregation self-model 

• Self-model states Cj,Y are added representing 

aggregation characteristics, in particular 

combination function weights j,Y 

• Self-model states Pi,j,Y are added representing 

aggregation characteristics, in particular 

combination function parameters i,j,Y 

c) Timing self-model 

• Self-model states HY are added representing timing 

characteristics, in particular speed factors Y 

 
This step of adding a self-model to a base network is 

also called network reification. If such self-model states 
are dynamic, they describe adaptive network 
characteristics. In a graphical 3D-format, such self-model 

states are depicted at a next level (also called reification 
level), where the original network is at a base level. As an 

example, the weight X,Y of a connection from state X to 
state Y can be represented (at a next reification level) by a 
self-model state named WX,Y (e.g., for an objective 
representation) or RWX,Y (e.g., for a subjective 
representation).  

Having self-model states to model an adaptation 
principle in a network-oriented manner is only a first step. 
To fully model a certain adaptation principle by a self-
modeling network, the dynamics of each self-model state 
itself and its effect on a corresponding target state Y have 
to be specified in a network-oriented manner by the three 
general standard types of network structure characteristics 
a) connectivity, b) aggregation, and c) timing: 

 Connectivity for the self-model states in a self-
modeling network 

For the self-model states, their connectivity in terms of 
their incoming and  outgoing connections has two different 
functions: 

Effectuating its special effect from its specific role 

The outgoing downward causal connections from the 
self-model states WX,Y, Cj,Y, Pi,j,Y, HY to state Y represent 
the specific causal impact (their special effect from their 
specific role) each of these self-model states has on Y. 
These downward causal impacts are standard per role, and 
make that the adaptive values WX,Y(t), Cj,Y(t), Pi,j,Y(t), HY(t) 
at t are actually used for the adaptive characteristics of the 
base network in equations (1) and (2).  

Indicating the input for the adaptation principle as 
specified in b) 

The incoming upward or leveled connections to a self-
model state are used to specify the input needed for the 
particular adaptation principle that is addressed.  

 

Aggregation for the self-model states in a self-
modeling network 

For the self-model states, their aggregation 
characteristics have one main aim: 

Expressing the adaptation principle by a 
mathematical function 

For the aggregation of the incoming causal impacts for 
a self-model state, provided as indicated in a), a specific 
combination function is chosen to express the adaptation 
principle in a declarative mathematical manner.  

 

Timing for the self-model states in a self-modeling 
network 

For the self-model states, their timing characteristics 
have one main aim: 

Expressing the adaptation speed for the adaptation 
principle by a number   

Finally, like any other state, self-model states have 
their own timing in terms of speed factors. These speed 
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factors are used as the means to express the adaptation 
speed. 

As a base network extended by including a self-model 
is also a temporal-causal network model itself, as has been 
shown in [7], Ch 10, this self-modeling construction can 
easily be applied iteratively to include self-models of 
multiple (reification) levels. This can provide higher-order 
adaptive network models, and has turned out quite useful 
to model, for example, within Cognitive Neuroscience 
plasticity and metaplasticity (e.g., [20-23]) in a unified 
form by a second-order adaptive mental causal network 
with three levels, one base level and a first- and a second-
order self-model level for causation concerning plasticity 
and metaplasticity, respectively, as shown in [7], Ch 4.  

In the current paper, the notion of a multi-level self-
modeling network will be illustrated by a higher-order 
adaptive social network model. In this model, in addition 
to the Euclidean combination function described in Section 
2.1, two other combination functions from the library are 
used: 

the advanced logistic sum combination function  
  defined by: 

    

  
(4) 

where  is a steepness parameter and log a threshold 
parameter and V1, …, Vk are the impacts from the states 
from which the considered state Y gets incoming 
connections 

the simple linear homophily combination function 

slhomo,hom(V1, V2, W) defined by 

(5) 

where  is an amplification parameter and hom a 
tipping point parameter and V1, V2 are a person’s 
representations of the two persons’ states involved and W 
represents the weight of their connection  

 Here, slhomo,hom(V1, V2, W) is used to model 

bonding based on (faked) homophily by internal 
connection weight representations, and  

to model control of the bonding. Bonding based on 
homophily [17-19] is the social network adaptation 
principle that is sometimes expressed by 

 ‘Birds of a feather flock together’ 

This expresses how being ‘birds of a feather’ or ‘being 
alike’ (modeled by state values V1 and V2 for the two 
persons not differing much) causally affects the connection 
between two persons. Note that the homophily tipping 

point hom is the point where the difference between the 
states of the two individuals (represented by |V1 - V2|) 
turns an increase of bonding (outcome > W) into a 
decrease (outcome < W), and conversely. In Section 4 this 
tipping point is set at 0.25: so in that case a difference |V1 - 
V2| < 0.25 has as causal effect that the connection will be 
strengthened (increase of W), whereas a difference |V1 - 
V2| > 0.25 has as causal effect that it will be weakened 
(decrease of W).   

This shows an example of how for a social application 
domain, within a causal network, states can have a causal 
effect on network connections. By applying a self-
modeling network model, this form of causation (for 
adaptation of connections through bonding by homophily) 
together with the causation between states in the base 
network (for social contagion) is addressed in a unified 
manner by one overall (two-level) causal network model, 
in contrast to the commonly used hybrid modeling 
approach to adaptive networks pointed out above in the 
second paragraph of this Section 2.2. Moreover, in Section 
3 it will be shown how also a third level for the control of 
the adaptation process can be incorporated within such a 
self-modeling causal network, thus obtaining a three-level 
network model unifying within one causal model the base 
network dynamics with adaptation of the connections of 
the base network and the control of that adaptation. 

III. A SOCIAL CAUSAL NETWORK WITH CONTROLLED 

ADAPTATION 

To illustrate the use of self-modeling networks to 
incorporate in a unified manner both dynamics and (multi-
order) adaptivity in a causal model, this section presents an 
adaptive causal network model for controlled bonding 
based on homophily by using subjective representations 
(some of which are based on fake input). The presented 
causal network model integrates three types of interacting 
processes, modeled within the causal model at three 
different levels: 

The considered social base network itself with its 
(within-network) dynamics for social contagion [24] 

Change of this social network over time based on 
bonding by homophily [17-19]: first-order social network 
adaptation 

Control of the first-order social network adaptation: 
second-order social network adaptation  

In contrast to what is usually done, for example, also in 
[19], here the bonding is not assumed to depend on the 
objective states for the two persons, but on how these 
states are perceived and represented by the persons through 
the formation of subjective state representation states. By 
controlling the formation of these subjective state 
representation states, indirectly the bonding is affected; 
contrarely, if you don’t take care to acquire information 
about the other person, then you miss a good reason for 
stronger or weaker bonding. To cover this, the above three 
types of processes have been modeled by a second-order 
adaptive causal network model based on a multi-level self-
modeling network using a first-order self-model (for 
formation of the subjective state representation states and 
for the bonding based on them) and a second-order self-
model (for the control of the formation of the subjective 
representation states). That offers some room to model 
cheating about one’s own properties, as regularly happens 
in real life: by faking an own state, the other person will 
make a false representation for it, which then will affect 
that person’s bonding in a false manner. 

The model’s connectivity is depicted in Fig. 1 by an 
example for two persons, one of which is faking his or her 
properties in order to achieve successful bonding. In this 
3D picture, each of the three planes models one of the 



Sri Lanka Association for Artificial Intelligence        16th Annual Sessions 

                                                          

 
SLAAI - International Conference on Artificial Intelligence          01st December 2020 
 

19 

three types of processes mentioned above; for an 
explanation of the states, see Table 1.  

Table 1  Types of states in the introduced controlled adaptive social 

network model 

SA Objective state Z of person A  

SB Objective state Z of person B  

FSB 
Objective state of person B faking state Z of 

person A 

RSA,A 
Subjective representation of person A for state Z 

of person A 

RSB,B 
Subjective representation of person B for state Z 

of person B 

RSA,B 
Subjective representation of person B for state Z 

of person A 

RSB,A 
Subjective representation of person A for state Z 

of person B 

RFSB,B 
Subjective representation of person B for his or 

her faked state Z  

RWA,B    

Subjective representation of person A for the 

weight of the connection from person A to 

person B   

RWB,A    

Subjective representation of person B for the 

weight of the connection from person B to 

person A   

CCA,B 

Control state for communication from A to B for 

the state Z of A: representation of the weight of 

the connection from RSA,A to RSA,B 

CCB,A 

Control state for communication from B to A for 

the state Z of B: representation of the weight of 

the connection from RSB,B to RSB,A 

COA,B 

Control state for observation by B for the state Z 

of A observed by B: representation of the weight 

of the connection from SA to RSA,B  

COB,A 

Control state for observation by A for the state Z 

of B observed by A: representation of the weight 

of the connection from SB to RSB,A  

 
The types of connections used at and between the three 

levels within this network model are shown in Table 2. 
Here Z is a type of state of a person, for example, how 
often the person listens to a certain type of music; to keep 
the notations simple, this type is left out of them; if needed, 
the Z could be used as an additional subscript. 

At the base level, social contagion is modelled by 
intralevel connections (depicted by black arrows in the 

lower plane in Fig. 1) such as SA → SB, FSB → SA, and SA 

→ FSB. Here the last connection models B faking by 
intentionally listening to the same type of music as A just 
at the moments that A can observe it. In contrast to FSB, 
state SB indicates how much B normally listens to that type 
of music. In the simulated scenario, SA will have high 
values and SB low values, whereas by copying SA also FSB 
gets high values. 

Within the first-order self-model, each person has 
subjective internal representation states of other persons’ 
states Z and the of state Z of her or himself, and also of his 
or her connections to others. This first-order self-model is 
modeled in the middle plane. For example, person A’s 
internal representation state for person B having state Z is 
modeled by state representation RSB,A, and A’s subjective 
representation of his or her connection to B is modeled by 
connection weight representation RWA,B. 

 

 

 
 

 

 

 

 

 

 

 

 

 

There are two pathways that contribute to formation of 
state representations such as RSA,B. First, these 
representations can be obtained through observation of SA 
by B. This is modeled by an upward interlevel connection 

SA → RSA,B from the base network to the first-order self-
model. As B is faking his or her base state, observation by 

A is modeled not by a connection SB → RSB,A but by 

connection FSB → RSB,A.  

A second pathway for a person B to get information on 
person A’s state is through communication between 
persons. For example, if A communicates his or her 
subjective representation RSA,A of the own state SA to B 
(e.g., ‘I often play this type of music!’), this is modeled by 

an intralevel connection RSA,A → RSA,B within the middle 
plane for the first-order self-model. Also in the 
communication, B is faking; therefore communication 

from B to A is not modeled by a connection RSA,B → 

RSB,A, but by connection RFSB,B → RSB,A (so that B may 
falsely communicate ‘What a coincidence, I also often play 
that type of music!’). 

Table 2 Connections in the controlled adaptive social network model 

and their explanation 

Intralevel connections 

SA → SB Social contagion from A to B for state Z 

FSB → SA Social contagion from B’s faked state for Z to A 

SA → FSB 
Faking contagion from state Z of A to faked 

state Z of B  

RSA,A → RSA,B     Communication of state Z from A to B 

RFSB,B → RSB,A     Communication of faked state Z from B to A 

RSA,A → RWA,B     
Effect of represented state Z of A by A on the 

connection from A to B (bonding by homophily) 

RSB,A → RWA,B 
Effect of represented state Z of B by A on the 

connection from A to B (bonding by homophily) 

RFSB,B → 

RWB,A     

Effect of represented faked state Z of B by B on 

the connection from B to A (bonding by 

homophily) 

RSA,B → RWB,A 
Effect of represented state Z of A by B on the 

connection from B to A (bonding by homophily) 

Interlevel connections  

Figure 1 Overview of the connectivity of the second-order 
adaptive social network model for bonding by homophily for two 

persons A and B, where B is faking the homophily for A. 

Second-order self-

model: 
Control of base 

network adaptation 
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Base network 
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SA → RSA,A 

Impact of observation of A’s 

state Z by A on A’s 

representation of A’s state Z   

Upward from  

base network to  

first-order self-

model 

SB → RSB,B 

Impact of observation of B’s 

state Z by B on B’s 

representation of B’s state Z   

SA → RSA,B 

Impact of observation of A’s 

state Z by B on B’s 

representation of A’s state Z   

FSB → RSB,A 

Impact of observation of B’s 

faked state Z  by A on A’s 

representation of B’s state Z   

RWA,B  → SB   

Effectuation of base 

connection weight for social 

contagion from state Z of A 

to state Z of B 
Downward from  

first-order self-

model to base 

network 
RWB,A  → SA   

Effectuation of base 

connection weight for social 

contagion from faked state Z 

of B to state Z of A 

RSA,A → CCB,A 
Communication control 

monitoring connection for A 
Upward from  

first-order self-

model to 

second-order self-

model  

RSB,B → CCA,B 
Communication control 

monitoring connection for B 

RSA,A → COB,A 
Observation control 

monitoring connection for A 

As indicated, person A’s representation of her or his 
connection to person B is modeled by RWA,B. It is 
assumed that for the bonding by homophily adaptation 
principle, the adaptive change of the represented 
connection for A to B depends on the internal 
representation states RSB,A and RSA,A. Therefore, this 

adaptation is supported by intralevel connections RSA,A → 

RWA,B and RSB,A → RWA,B within the first-order self-
model. The connection representations by RW-states in 
turn affect the social contagion within the social network, 
which is modeled by downward interlevel connections 

RWA,B  → SB and RWB,A  → SA from the first-order self-
model in the middle plane to the base network. 

To control the social network adaptation processes, two 
types of control actions are considered in particular:  

controlling the observation of state Z  from person A by 
person B is modeled by control state COA,B and from 
person B by person A is modeled by control state COB,A 

controlling the communication about state Z from 
person A to person B, modeled by control state CCA,B and 
the communication about state Z from person B to person 
A, is modeled by control state CCB,A 

Activation of a communication control state makes that 
the related connection in the first-order self-model in the 
middle plane gets a high value (1 or close to 1); this is 
achieved by interlevel connections from control states to 
RS-states in the first-order self-model. For example, 
activation of communication control state CCA,B makes 

that the connection RSA,A → RSA,B from A’s state RSA,A to 
B’s state RSA,B  gets a high value (1 or close to 1) so that 

the transfer of information by communication happens; 

this is modeled by interlevel connection COA,B → RSA,B. 
This can be considered as B asking A for the information 
about him or herself, upon which A communicates this 
information. Similarly, activation of an observation control 

state COA,B makes that the connection SA → RSA,B from 
A’s state SA to B’s state RSA,B gets a high value (1 or close 

Box  1  

Full specification of the adaptive self-modeling causal network model by role matrices for all (connectivity, aggregation and timing) characteristics causally 

affecting the network states 
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to 1) so that the transfer of information by observation 

takes place; this is modeled by connection COA,B → RSA,B. 
In the case modeled here, control states such as CCA,B and 
COA,B themselves may become active depending on B’s 

state RSB,B; this is modeled by connections RSB,B → 

CCA,B and RSB,B → COA,B. But this may be addressed in 
many other ways as well, including externally determined 
control, for example, by enabling or allowing observation 
or communication (only) at specific time slots. 

 To specify a network model according to the approach 
described in [7], as discussed in Section 2, three types of 
network characteristics are to be covered: connectivity, 
aggregation and timing characteristics. Any state in the 
network is causally affected by all of such characteristics, 
each from its own specific role. Following the role 
matrices specification format defined in [7] (pp. 39-41, 
89), they are specified by role matrices as shown in Box 1 
which are used as input for the dedicated software 
environment to automatically obtain the simulation 
discussed In Section 4.  

More specifically, role matrices indicate in rows 
successively for all network states, the factors that causally 
affect them from the different roles. So in the row for a 
state Y, in each column a causal relation is specified 
affecting state Y for the role described by that role matrix. 
In this way, role matrices describe the network model by 
mathematical relations and functions.  

In the first place, concerning connectivity roles, each 
state is causally affected by the other states from which it 
has incoming connections and by the weights of these 
connections. In role matrix mb (see Box 1), for each state 
it is indicated from which other states it has incoming 
connections from the same or a lower level. In role matrix 
mcw, it is indicated what are the connection weights for 
the connected states indicated in mb. If these weights are 
static, their value is indicated, in green shaded cells (here 
always 1), but if the connection weight is adaptive, instead 
of a number the self-model state representing this weight is 
indicated in role matrix mcw. This can be seen (cells 
shaded in a peach-red colour) in mcw for the incoming 
connections for the first two states X1 and X2, and for the 
incoming connections for the states X7 and X8. Indicating 
these adaptive value representations, defines the downward 
connections of Fig. 1. From the timing role, also its speed 
factor causally affects a state; they are shown in Box 1 
(role matrix ms, which actually is a vector).  

In the lower part of Box 1, showing the aggregation 
roles causally affecting a state, it can be seen which states 
use which combination functions (role matrix mcfw) and 
which parameter values for them (role matrix mcfp). In 
addition to the five role matrices for the different roles of 
causal impacts, the initial values for the example 
simulation are also shown in Box 1, which may be 
considered as initial causal impacts. 

IV. SIMULATION: FAKING HOMOPHILY FOR BONDING  

In this section, a simulation of a simulated example 
scenario will be discussed to illustrate the introduced 
second-order adaptive causal social network model for 
faking homophily. In Fig. 2 the simulation for the example 
scenario is shown. Here the states SX are slowly changing 
whereas the connection representations in the form of the 

RW-states are changing faster. It indeed can be seen that 
for A and B both directional connection representations 
RWA,B and RWB,A start to gradually increase from time 
point 5 on to reach values above 0.7 which in the long run 
eventually reach a value (close to) 1. These changes of the 
connections are a consequence of the homophily principle, 
as the values of state SA of A and the faked states FSB and 
RFSB,B for B quickly get close to each other; note that the 
tipping point for similarity set was 0.25, so a difference 
between the relevant representation states < 0.25 is 
strengthening a connection.  

In Fig. 2, also the roles that are played by the control 
states in the form of the CO- and CC-states and by the RS-
states for subjective representations can be seen. The two 
lines that start at 0 and get close to 1 around or soon after 
time 10 indicate the control states COA,B and COB,A (light 
green) for observation and CCA,B and CCB,A (light blue) 
for communication, respectively. This makes that at that 
time their mutual observation and communication channels 

SA → RSA,B and FSB → RSB,A, and RSA,A → RSA,B   and 

RFSB,B → RSB,A  get weights close to 1. This implies that 
then they indeed both observe and communicate to each 
other about the type of music they usually listen to. These 
control states are triggered in this example scenario 
because each of the persons automatically observes his or 
herself and therefore they quickly (before time point 4) 
form representation states RSA,A and RSB,B of their own S-
states concerning music (the red lines, starting at 0.4 for B 
and at 0.7 for A).  

 

 

Figure 2 Outcomes for the example scenario simulation 

Because of these communication and observation 
actions, the mutual subjective representations RSA,B of B 
about A (the dark green line) and RSB,A of A about B (the 
orange line) based on fake information are formed, and 
around time 20 reach levels close to 0.9. Only now these 
subjective representations have been formed in a 
controlled manner, the homophily principle can start to 
work, as the bonding works through the (subjective) 
representation RS-states, not through the (objective) states 
SX  themselves. More specifically, from the moment on that 
the subjective representations of A about B and A’s own 
subjective representation about her- or himself get closer 
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than 0.25 (which is just before time point 5), her/his self-
model representation RWA,B of her connection to B (the 
pink line) starts to gradually increase. Similarly, the effect 
of the subjective representations of B for A and B’s own 
subjective self-model representation about him or herself, 

on the subsequent increase of his representation RWB,A of 
this connection to A (the blue line) can be noted. Before 
that point in time their connections were not increasing, 
but instead go slightly downward; this illustrates the effect 

of the control via the subjective self-model 
representation states on the adaptation. 

V. DISCUSSION 

Causal modeling combines two quite useful properties. 
In the first place, it is an intuitive, declarative way of 
modeling supported by often used graphical 
representations. Secondly, due to the universal character of 
causality, in principle it should apply to practically all 
scientific disciplines. However, limitations for dynamics 

and adaptivity stand in the way of applicability in many 
domains. In this paper it was discussed how these 
challenges can be addressed by exploiting the notion of 
self-modeling network developed from a Network Science 
perspective [6, 7]. Self-modeling causal networks cover 
dynamics of the states of the nodes as well as adaptivity of 
these causal relations. Here adaptivity of a base network is 
obtained by explicit representations of the characteristics 
of the causal relations in the form 

of a self-model added to the base network. These self-
modeling causal networks are specified in a declarative 
manner by mathematical relations and functions, and 
provide a causal network addressing the adaptation. 
Therefore, this approach indeed takes causal modeling to a 
next level so that now dynamics and adaptivity are also 
covered by a unified causal perspective. By an illustration 
for a controlled adaptive social causal network model, it 
has been shown how this widens the scope of applicability 
of causal modeling. 

Another topic that illustrates the applicability of the 
causal modeling approach based on self-modeling 
networks well is plasticity and metaplasticity within 
Cognitive Neuroscience, as described, for example, in 
empirical literature such as [20-23]. In [7], Ch 4, it is 
shown how this can be modeled as a self-modeling causal 
network incorporating a first-order self-model for plasticity 
and a second-order self-model for metaplasticity. 

Such multi-level self-modeling causal networks 
incorporate different types of causation. In the first place 
this covers causation between base states, as is a familiar 
form of causation known from traditional causal models. 
This is also the form of causation usually focused on (for 
mental states) within Philosophy of Mind, such as in [14]. 
However, in self-modeling network models there is also 
causation from these base states to other types of states 
representing causal relations, and back. Such forms of 
causation have to occur as soon as causal relations can 
change in the world, as such change should be caused by 
something. In turn, such changes causally affect the future 
processes. 

So, for adaptive cases, from a completeness of 
causation perspective such less familiar forms of causation 
cannot be avoided, and have direct relations to what 
actually happens in the world. Indeed, for example in 
empirically focussed Cognitive Neuroscience literature 
such as [20-23], it is described in some detail how states 
and processes addressing plasticity and metaplasticity are 
realised by specific (changing) brain configurations and 
causal relations for them. So, self-models are not just 
artificial modeling concepts created by some fantasy: they 
relate to real counterparts of them in the physical world. In 
that sense, it may be claimed that self-modeling causal 
networks actually exist in the world, at least for this 
context of Cognitive Neuroscience. A similar illustration 
for the biological domain can be found in [7], Ch. 7, 
addressing a five-level self-modeling causal network 

model describing different stages in an evolutionary 
process. Here the different types of states and causation in 
the self-modeling causal network have counterparts in the 
physical world in the form of (changing) configurations 
and processes as described in literature from Biology. 

The presented approach allows declarative modeling of 
dynamic and adaptive behaviour of multiple orders of 
adaptation from a unified causal perspective. Traditionally, 
declarative modeling approaches are a strong focus of AI. 
There are two longstanding themes in AI to which the 
work presented here relates in particular: causal modeling 
as already mentioned [1-4] and metalevel architectures and 
metaprogramming [9-13]. As discussed, a main 
contribution to the causal modeling area is that this is 
extended by dynamics and adaptivity of the causal 
modeling, addressing both the dynamics of the causal 
effects and the adaptive dynamics of the causal relations 
themselves. A main contribution to the area of metalevel 
architectures and metaprogramming is that now network 
models are covered as well in the form of self-modeling 
networks, while traditionally the focus in this area is 
mainly on logical, functional and object-oriented modeling 
or programming approaches; e.g., [10].  

In relation to the area of Neural Networks within AI, 
the network-oriented modeling approach described here 
distinguishes itself by a multidisciplinary Network Science 
focus on causality and adaptation within empirical natural 
and human-directed sciences. In contrast, the area of 
Neural Networks has its main focus on artificial neural 
networks to solve optimisation challenges and on their 
computational efficiency. Another important distinction is 
the notion of self-modeling network which is the main 
focus in the current paper. However, there are also some 
technical elements in common, for example, the format of 
the canonical difference equation (1) (see Section 2.1) used 
here can be considered a form of socalled recurrent 
network as also used in the Neural Networks area. But a 
difference here is the use of speed factors per node which 
enables to model different nodes that are not necessarily 
synchronous in their dynamics. This asynchrony is usually 
needed to model real-world processes as these are not 
often synchronous and can even involve entirely different 
time scales. This explicit way to model differentiated 
timing is not a common practice in the Neural Networks 
area within AI. 

From a more theoretical side, following Ashby [26] in 
[25] Section 3.1 it has been shown that any state-
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determined dynamical system (as defined in [26] and also 
used in [27]) can be described by a set of first-order 
differential equations, and conversely. Moreover, in [25], 
Section 3.2 it has also been shown how any set of first-
order differential equations can be (re)modeled by a 
temporal-causal network model. It has been shown in [7], 
Ch 10 that any self-modeling network obtained by adding 
a self-model to a temporal-causal network is iself also a 
temporal-causal network. Therefore, these methods can 
also be applied to adaptive processes: any description of an 
adaptation process by a state-determined system or by 
first-order differential equations can be rewritten as a self-
model in temporal-causal network format. This provides 
evidence from a more theoretical analysis perspective that 
the approach discussed here has a wide scope of 
applicability. 

There are still some more interesting challenges that 
can be addressed. A first challenge is to explore other 
interesting cases of higher-order adaptation and to 
investigate whether self-modeling causal networks indeed 
are suitable to model them. Within Cognitive 
Neuroscience, from an empirical perspective the notions of 
plasticity and metaplasticity have been introduced [20-23], 
relating to first- and second-order adaptation. It has been 
found how these can be modeled by a second-order self-
modeling network; see [6] and [7], Ch 4. Similarly, it has 
been described how second-order adaptive social networks 
for bonding by homophily can be modeled by self-
modeling networks; see [6] and [7], Ch 6. However, in 
general higher-order adaptation for social networks has not 
been addressed well in the literature. As an exception, in 
[28, 29] the notion of inhibiting adaptation for networks 
has been described, which refers to some form of second-
order adaptive social networks. This applies, for example, 
to terrorist network organisations. It would be interesting 
to investigate whether and how such second-order social 
networks can also be described as self-modeling causal 
networks.  

Within Biology, some literature can be found on how 
evolutionary processes can be described as higher-order 
adaptation; e.g., [30, 31]. It has been shown in [7], Ch 7, 
how one case study concerning pregnancy and disgust can 
be modeled by a fourth-order adaptive self-modeling 
causal network model. It is interesting to address more 
case studies in this area. Moreover, in  Hofstadter [32] 
claims that the notion of Strange Loop underlies human 
intelligence. This is described in [32] informally as a form 
of self-modeling of multiple levels, where for some n, the 
nth level is equal to the base level, so that the levels form a 
cycle. It has been found that this also can be modeled by a 
self-modeling network; see [7], Ch 8 for an example for a 
mental network and [33] for an example for a social 
network. However, the notion of Strange Loop could be 
explored for more cases. 

Finally, as mentioned the research described in the 
current paper follows the multidisciplinary perspective of 
Network Science. Therefore, the focus is on adaptation 
principles known from nature and described in empirical 
disciplines such as Biology, Neuroscience, Cognitive 
Science or Social Sciences. In contrast, it may be an 
interesting challenge to investigate how some wellknown 
artificial methods for machine learning can be modeled by 

self-modeling networks. As the self-modeling network 
approach provides a declarative perspective on modeling 
adaptation processes, this might provide more declarative 
descriptions of such artifical methods, which usually are 
described in a procedural manner by algorithms. As 
pointed out in one of the paragraphs above, from a 
theoretical perspective this should be possible. But it 
would be interesting to see how this would actually look 
like for some examples. It might provide a more clear 
modeling separation of the conceptual core of a machine 
learning method and the procedural optimisation involved. 
As an example, in this way backpropagation for artificial 
neural networks could be modeled in a network-oriented 
manner with gradient descent as conceptual core plus an 
efficient procedure to do the required calculations; e.g., 
[34], Ch 7.  
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