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Abstract. This work presents use of Fully Convolutional 
Network (FCN8) for semantic segmentation of high-resolution 
RGB earth surface satellite images into land use land cover 
(LULC) categories. Specifically, we propose a non-
overlapping grid-based approach to train a Fully 
Convolutional Network (FCN-8) with vgg-16 weights to 
segment satellite images into four (forest, built-up, farmland 
and water) classes. The FCN8 semantically projects the 
discriminating features in lower resolution learned by the 
encoder onto the pixel space in higher resolution to get a dense 
classification. We experimented the proposed system with 
Gaofen2 image dataset, that contains 150 images of over 60 
different cities in china. For comparison, we used available 
ground-truth along with images segmented using a widely 
used commeriial GIS software called eCognition. With the 
proposed non-overlapping grid-based approach, FCN-8 
obtains significantly improved performance, than the 
eCognition software. Our model achieves average accuracy of 
91.0% and average Intersection over Union (IoU) of 0.84. In 
contrast, eCognitions average accuracy is 74.0% and IoU is 
0.60. This paper also reports a detail analysis of errors 
occurred at the LULC boundary. 

Keywords: Gaofen-2 Image Dataset (GID), Land Use Land 
Cover (LULC), 
Segmentation, Deep Neural Network, FCN-8 

1 Introduction 

Efficient land management tasks such as change 
detection, urban planning, resource monitoring, 
environmental protection, agriculture, building road 
maps, planning for socioeconomic development etc. [4], 
[3], [2], [6] depends on proper identification of LULC. 
Usually classification of LULC is performed manually 
on map images using geographic information system 
(GIS) softwares (e.g. eCognition [13]), which is a time-
consuming and inefficient approach. Some Researchers 
propose machine learning techniques to perform 
automatic classification of LULC in different semantic 
classes (i.e forest, farmland, water, built-up area, 
meadows) from satellite images.  

 

Fig.1. Block Diagram of the proposed approach (Forest model). Upper part is the training process. Lower part is the prediction stage. 
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Satellite images have a number of channels i.e. R, G, B, 
Near Infra-red (NIR), and Infra-red (IR) etc. From these 
channels, geographic researchers attempt to calculate 
normalized difference vegetation index (NDVI)and 
normalized difference moisture index (NDMI) for forest 
and farmland segmentation. They also derived 
reflectance index (RI), brightness index (BI) and some 
other indexes to identify other classes. These indexes are 
calculated using specific formulas derived for each 
class/index over the various combination of raster 
channels. For example, NDVI is calculated by the 
formula: 

. 
The bands representing NIR(Near Infrared) and RED 
will vary from satellite to satellite. Often, a satellite may 
give only bands closer to the ones required for such 
index calculations rather than giving the exact spectrum. 
In that case, the band closest to the required one is used 
to perform such calculations. To automatically identify 
vegetation in satellite images, Cheng et al. [4] used 
Histogram of Oriented Gradients (HOG), Scale-
Invariant Feature Transform (SIFT), and Local Binary 
Pattern (LBP) for feature extraction and support vector 
machine as classifier. While tested on remote sensing 
image data provided by Multi-resolution land cover 
characteristics (MRLC) consortium [9], their system 
showed 79.6% overall accuracy. 

Recent researches use various deep learning 
methods with better success [5], [10], [7], [12] for land 
cover classification and segmentation. Ben Hamida et al. 
[5] uses DenseNet [14] and SegNet[1] for fine 
segmentation and coarse segmentation, respectively on 
multi-spectral Sentinel-2 images. They report overall 
accuracy of 51.4% with DenseNet and of 83.9% with 
SegNet on GlobeCover data. Piramanayagam et al. [10] 
introduced early and late fusion of features in a neural 
architecture(Fully Convolutional Network [8], FCN) for 
application in multisensor aerial/satellite image 
classification. They achieved overall accuracy: 59.87% 
and average F1 score: 0.51 on RGB images from 
satellites. Shengjie Liu et al. [7] uses Object-based 
image analysis (OBIA) for land use and land cover 
mapping using optical and synthetic aperture radar 
(SAR) images. To obtain object-based thematic maps, 
they developed a new method that integrates object-
based postclassification refinement (OBPR) and CNNs 
for LULC mapping using Sentinel optical and SAR data. 
They achieved accuracy of 77.64% for the Zhuhai-
Macau LCZ dataset with 100 m spatial resolution. 
Above performances are not satisfactory for the 
automatic LULC classification due to some limitations. 
The limitations include: scarcity of ground truth data, 
ambiguity of boundary pixels, inability to model spatial 
characteristics of LULC classes etc. 

To improve the segmentation map, Tong et al. [12] 
used an ensemble of patch-wise classifier with 
hierarchical segmentation method. Later, they used 
selective search to estimate the boundary. However, 
patch based systems suffer a number of drawbacks for 

satellite images. Firstly, patch-based technique will limit 
the segmentation process on objects that might have a 
wide range of shape, size, and densities. Secondly, the 
error in detecting the patches will propagate to the next 
level where patches are united together to create final 
segmentation. Thirdly, patch based systems achieves 
very poor generalizability. To overcome the above 
mentioned limitations, we employ a deep learning-based 
semantic segmentation method that segments forest, 
built-up, farmland, and water area from the satellite 
RGB images directly. As RGB images are easily 
explainable and observable for LULC classes, we focus 
our segmentation on RGB image only. 

Particularly, we employ a pre-trained convolutional 
neural network with VGG-16 weights as encoder to get 
the Fully Convolutional Network (FCN-8)[8]. Figure 1 
shows the block diagram for forest segmentation where 
upper part depicts the training process and lower part 
represents prediction stage. During training, we supply 
RGB images with corresponding ground truth to learn 
the FCN-8 model for forest. In the prediction part, we 
segment the input image for forest area using the learned 
model. We do the same approach for other LULC 
classes. In initial experiments, we downsampled the 
satellite image of size 7200×6800 to 224×224. Huge 
downsampling process induce unexpected errors in the 
boundary. To improve the performance, we divide the 
full size satellite image into 224 × 224 non-overlapping 
sub-images. Hence, the resolution of the input image is 
preserved while fed to the FCN-8. This approach 
achieves great success with an average accuracy of 91% 
and an average Intersection over Union (IoU) of 0.84 
while segmenting the RGB images from Gaofen-2 
Image Dataset (GID) dataset [12]. Moreover, the FCN-
8 model outperforms eCognition [13]. Detail 
performance comparison is done in the chapter 4. Hence, 
the proposed automated LULC process with FCN-8 
described in this paper can help to extract vital 
information to understand our planet better. However, 
sometimes, the FCN-8 induces errors in finding the 
boundaries, especially for farmlands which encompass 
great diversity in color and shape. We did a detail error 
analysis where we described the possible sources of 
these errors. 

2 Dataset and Methodology 

This section describes the dataset and the preprocessing 
part. Also, we describe the approach and methodology 
we use in this paper. 
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Fig.2. Sample input image [a]. [b] red pixels represent Build-
up class; cyan ones represent forest, green ones represent 
farmland and finally, blue ones represent water. black pixels 
are unrecognized by the authors. Images [c], [d], [e] and [f] 
show the binary ground truth image for Forest, Farmland, 
Built-up, and Water class 

2.1 Dataset Description 

The GID dataset contains a total of 150 images in tiff 
format of resolution 7168 × 6720. Each pixel covers 
upto 4 meters resolution.GID provide a spectral range of 
blue (0. .52 µm), green (0. .59 µm), red 
(0. .69 µm) and near-infrared (0. .89 µm), and 
a spatial dimension of 7168 × 6720 pixels covering a 
geographic area of 506 km2. 

Ground Truth The dataset also contains ground truth 
labels for these 150 images. The ground truth images 
contain different colored pixels to show four different 
LULC classes. Figure 2a and 2b is an example of input 
image and corresponding ground truth that are provided 
by GID dataset. However, black pixels represent 
unrecognized area by the authors of [12]. Our 
experiments do not include any unrecognized area. 

Preprocessing We preprocess the ground truth images 
to produce binary image for each class. For each class, 
we make the pixels in target class into blue and the rest 
of the classes into red. Hence, we produce four binary 
ground truth images for each input image. Binary 
images for Forest, Farmland, Built-up, and Water 
classes are shown in 2c - 2f. 

Data Augmentation We used nine (9) augmentation 
methods for our data augmentation. Hence, each of the 
images were increased to 10 different images 

 

Fig.3. Fully Convolutional Network FCN - 8 

including the original image. We flipped the images 
vertically, horizontally, rotate the images into anti-
clockwise 90 , 180  and 270 . Then we used the contrast 
stretching, gamma, and hue. 

2.2 LULC with Semantic Segmentation 

LULC in a very high level a classification task. It 
necessitates the most accurate classification. Semantic 
segmentation is required which classifies the image on 
the pixel level, that is, each pixel in the image belongs 
to a class. In remote sensing paradigm, semantic 
segmentation indicates segment/detection of area that 
are consists of same kind of land cover. For example, 
semantic segmentation for forest will give us all forest 
area regardless of any size, shape, and texture. 

2.3 VGG-16 Architecture and Fully Convolutional 
Layer: 

The VGG network architecture, a convolutional neural 
network (CNN), was introduced by Simonyan and 
Zisserman et al. [11]. Using a convolutional layer as the 
last layer of the VGG-16, the resulting fully 
convolutional network (FCN8 [8]) segments the image 
instead of classifying it. Pixels belonging to same class 
given the same color label. Generally, CNN is connected 
networks of convolution layer and pool layer where 
convolution layers are used to encode the lower level of 
features to the higher level of semantic abstract. Pooling 
layers are used to decrease the dimension of the higher 
levels. Reducing volume size is handled by max 
pooling. For a CNN, the input is an image X of 
dimension m × n × d(e.g., 3 color channels(R,G,B)) . 
The neurons are also arranged in 3 dimensions. Each 
neuron is connected to a number of inputs in the 
previous layer. Let Xin of size m × n × d be the input and 
Xout of size m × n × t be output of a convolution layer. 
Now, Output at the location [p, q, r] can be obtained 
from the input as follows: 
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Where, [p = 0,1,...,m  1]; [q = 0,1,...,n  1]; [r = 0,1,...,d 
 1]. Here, W is the weight matrix of size (2×k k 

+1)×d×t with k determining the filter/kernel width, and 
bs is the bias vector of size t. For example, in a FCN, the 
input image is of size 224 × 224 × 3(m = 224,n = 224,d 
= 3) and the first convolution layer outputs 64 (t) 
features of size 224 × 224. The 64 filters with support 3 
× 3 × 3 (here k = 1, W is of size 3 × 3 × 3 × 64 and b is 
a 64 element vector) transforms the 224×224×3 input 
into the 224×224×64 feature volume. The above 
operation (denoted as Xout = g(Xin,W)) is followed by 
nonlinear activation (e.g., ReLU: Zout = max(0,Xout)). 
The features obtained are further passed through 
multiple convolution, ReLU, and subsampling or 
pooling layers. These layers are then followed by a fully 
connected convolutional layer. This transformation 
allows the network to generate coarse maps with spatial 
support. . A convolution transpose layer [8] is then used 
to bring the coarse map to the original image resolution. 

3 Experimental Setup and Results 

In this section, we discuss our experimental setup, 
train/test splits, trainingtesting process, and the 
evaluation metrics. 

3.1 Train and Test Splits 

The dataset contains 150 images in total. All of them are 
RGB images. However, each of the LULC classes are 
not present in every image. In order to make good 
representation of LULC classes in train and test sets for 
our experiments, we considered the images with at least 
5% pixels belonging to one class for training and testing 
the binary model for that particular class. We have 
trained our binary FCN-8 models separately for each of 
the class. The table 1 shows that in 31 images, Forest 
was present in at least 5% of the area. Similarly, 
Farmland, Built up and Water is present in 131, 60 and 
72 images respectively. We did split our train data and 
test data 

Table 1. Number of images containing at least 5% of each 
class 

Class Forest Farmland Builtup Water 

Total images 31 131 60 72 

 Train and Test Split 25 6 119 12 52 8 63 9 

 
About 8%-20% images from each class are used as 

test set depending on the dataset size for each class as of 
Table 1. Numbers in shaded red cells represent the 
number of images kept separate for final testing and 
evaluation for each class and Numbers in shaded green 
represent the training set size. In the final test process, 
we use our test split that consist of all unseen images that 
we kept separate. Hence, total number of test images 
separated from all classes, 

6+ 12 + 8 + 9 = 35. 
 

3.2 Training and Testing 

We train a separate binary model for each of the four 
LULC classes i.e. forest, water, farmland, built-up. In 
this training phase, each image is augmented to increase 
the dataset size. Dataset was augmented in 9 ways as 
discussed in the augmentation section. Then we test the 
models on the test splits. 

3.3 Evaluation Matrix 

Calculating confusion matrix gives us the performance 
of our classification model whether it is getting right and 
the types of error it is making. In our segmentation 
model, the output is a binary image which contains 
targeted class or non-targeted class. We compare this 
output image with binary ground-truth image. In this 
case, we use the pixel by pixel Accuracy, Recall, 
Precision, F1-score, and Intersection over Union (IoU). 
Here, IoU is calculated by dividing the area of overlap 
by the area of union; 

We measure these performances for our 4 classes 
Forest, Built up, Farmland and Water individually. 

4 Result 

In this section, we discuss the performance of our 
models and show the comparison with eCognition. 

1.1 Training Process 

The training process of FCN-8 involves 100 epochs with 
learning rate of 0.01. During the train, we downsample 
the original images from 7168 × 6720 × 3 into 224 × 224 
× 3 dimensions. We also perform augmentation on the 
downsampled images to produce nine augmented 
versions of the original downsample image. Then we 
supply the downsample images and their augmentation 
images to the pre-trained FCN-8. We also supply the 
corresponding binary ground truth image of 224 × 224 
× 3 for the particular binary segmentation FCN-8 model. 
In the non-grid-wise manner where we downsample the 
images, augmentation is used to increase dataset size. 
But in the grid wise training no augmentation is used as 
the dataset becomes very large even without 
augmentation. SO 25×10 = 250 input images along with 
their ground truth are passed through the network for 
downsampled training. Therefore, in grid-wise manner, 
we feed 960 × 25 = 24000 input images along with 
24000 corresponding binary ground truth images for the 
forest FCN-8 model. Similarly, we feed 114240 input 
images and their corresponding ground truth images to 
the Farmland FCN-8 model separately, and so on. More 
on the grid-wise training is discussed in subsection 4.3. 
 

1.2 Testing Process 

After the training, we supply the test set to the fine-tuned 
individual FCN 8 model for each binary class. Similar 
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to the training process, the test dataset passes through 
the network in a grid-wise manner where each original 
resolution image is split into 960 images with 224×224 
resolution. However, during testing, we did not perform 
any augmentation on the test set. Hence, 6 input images 
are tested with Forest FCN-8 model to calculate the 
performance of this model. We feed 12,8 and 9 test 
images to Farmland model, to Built-up model, and to 
Water model respectively as table: 1 . Then, we compare 
the segmented output with the corresponding binary 
ground truth data to calculate confusion matrices for 
each of the model. The performance metrics calculated 
from the confusion matrices are shown in the table: 2 

Table 2. Performance of FCN-8 and eCognition(eCog) on 
the test set. 
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For the test set, our model achieves good accuracy 
across the classes as we can see in Table 2. The IoU is 
lower for forest with FCN-8 than the IoU with 
eCognition. However, the recall scores for FCN-8 are 
very poor for all classes except Water. That means the 
sensitivity of the FCN - 8 model is low. Even though the 
precision score is good for Forest and Water class, the 

low recall resulted in lower F1 score. The performance 
metrices for eCognition are showed in the right side in 
Table 2. Though, the FCN-8 models outperform 
eCognition, accuracy, IoU, and F1 scores are not high 
enough. 

1.3 Grid-wise training and testing 

In this section, we perform experiments with the 
satellite images while keeping the spatial resolution 
unchanged. However, the size of the FCN-8 is 224 × 224 
whereas the input image dimension is 7168×6720. 
Therefore, to keep the image texture unchanged, we 
divided each full-sized input image into non overlapping 
sub-images. Each of the sub-images are of size 224 × 
224. The sub-images are created by dividing full image 
grid-wise so that we can stitch them together after 
segmenting all sub-images. After segmenting all these 
sub-images, we concatenate the outputs to produce the 
final segmented output of full dimension 7168 × 6720. 

Table 3. Performance of FCN-8 on cropped sub-images 
of test data. 

Class Accuracy IoU Recall Precision F-1 

Forest 0.915 0.847 0.565 0.901 0.640 

Builtup 0.914 0.846 0.506 0.850 0.626 

Farmland 0.845 0.735 0.711 0.699 0.691 

Water 0.964 0.932 0.862 0.905 0.877 

Average 0.910 0.840 0.661 0.839 0.708 

Cropping the input image into sub-images offer 
some important advantages for the LULC segmentation. 
They are: a) The sub-images have the original texture. 
No information is lost due to downsampling, b) Number 
of sub-images for training set increases significantly. 

Table 3 shows the detail performance when we test 
images with the FCN 8 model that was trained in grid-
wise fashion. Water region is segmented more 
accurately than other classes. Our observation is that 
water is present in more dense fashion with little or no 
small parts scattered around in a image where water is 
present at all. Other classes has scattered small parts all 
over the image if present i.e. they are not as dense as 
water is. This leads to slightly less satisfying result for 
other classes. However, farmland suffers the most from 
this spatial distribution characteristics resulting in worst 
performance when compared to other classes. 

For training, we also divide the binary ground truth 
image in the same fashion so that each input sub-image 
has unique ground-truth sub-image. Since, now we have 
sufficient number of training sub-images for the FCN-8 
classes, we do not make any augmented versions of the 
input sub-images. Thus, for forest we have almost 
25×960 = 24000 sub-images to train FCN-8 Forest 
model. For farmland FCN-8 model, we have 114240 
sub-images. 

After training is done, we also create sub-images 
from the test images and then we pass them to the fine-
tuned FCN-8. Then, we stitch the segmented output sub-
images together to create final output of full dimension 
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7168 × 6720. Figure 4 shows the comparative 
performance of eCognition, FCN-8 with down- 

 

Fig.4. Performance Comparison for test-image-
segmentation by eCognition, FCN-8 with down-sampled 
images, and FCN-8 with 224×224 grid sub-images. (a) 
Accuracy, (b) Intersection over Union. 

 

Fig.5. Input image (a); (b) The legends: TP means true 
positive pixels, FN indicates false negative pixels, FP means 
false positive, and TN represent true negatives, (c) Forest 
output: cyan represents correctly classified forest area, blue 
pixels indicate false negative pixels: forest was there, but the 
model cannot detect forest; red means false positive pixels: 
forest was not there but the model predicts forest; Gray pixels 
act as the background pixels; (d) Built-up output, (e) Water 
output, (f) Farmland output 

 
Fig.6. (a) Output image for Forest segmentation; cyan 

represents correctly segmented forest area; blue indicates : 
forest was there, but the model cannot detect forest; red means 
: forest was not there but the model predicts forest; Gray means 
the background pixels; (b) zoomed in area of the dashed area 
of (a). 

sampled images, and FCN-8 with 224 × 224 grid 
sub-images. Accuracy and IoU for grid sub-image 
approach are significantly improved. Among them, the 
accuracy scores for Forest, built-up, farmland, and water 
have been increased 26.07%, 

34.79%, and 31.95%, respectively compared to 
eCognition. 

Figure 5 shows the segmented output after the 
stitching. 

1.4 Error Analysis 

In this section, we try to explore where the CNN fails 
to segment and why. Figure 6a is the output of the FCN-
8 model where cyan represents correctly segmented 
forest where we use downsampled image as input. While 
analyzing the performance, we are closely looking to the 
image 6a and the zoomed in version of in 6b where the 
segmentation fails severely. We made couple of 
observations to identify why pre-trained FCN-8 is failed 
to segment the forest accurately. There are very small 
regions with sharp boundaries present in the rectangle. 
Unfortunately, VGG-16 cannot model them unless the 
small region is big enough (6b blue region). We also 
observed that if a region is smaller than 10m ground 
sampling distance (GSD), the FCN-8 can not capture the 
region. We are zooming out the original image of 
7168×6720 into 224×224 input image for the FCN-8. 
So, we are zooming out around 960 times smaller. As a 
result, the small regions that contain few pixels now lose 
the textures significantly. Secondly, they lose their 
spatial GSD and LULC properties. Thus, this forest 
region (in an input image) already lose its ground region 
validity of a forest. As a result, the FCN-8 did not 
capture it as forest indeed. More importantly, the 
boundary pixels have less informative texture when we 
zoom out the images. Scaling down the original image 
massively reduces the discriminating features of the 
boundary pixels. 
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These errors are alleviated by keeping the resolution 
of the images same while feeding them to the network. 
However, not all errors are fixed by using the grid sub-
images. We see that farmland has lower performance 
regarding the accuracy and IoU compared to other 
classes though we use grid sub-images. We found there 
are farmlands with very sharp edges in Figure 7a and 7b. 
Sharp boundaries are not captured by the FCN -8 model. 
Generally, FCN-8 always looks for smooth periphery. 
The FCN-8 is pretrained with ImageNet. And ImageNet 
does not have any objects that have such kinds of crisp 
boundaries. This might be the reason why the FCN-8 
fails. 

 

Fig.7. (a) Output image for Farmland segmentation; cyan 
represents correctly segmented farm area, blue indicates : 
Farmland was there, but the model cannot detect farmland; red 
means : farmland was not there but the model predicts 
farmland; Gray acts as the background pixels; (b) zoomed in 
the dashed region. 

5  Conclusion 

In this paper, we propose a semantic segmentation 
framework using Fully Convolutional Network (FCN-8) 
to segment Land Use Land Cover classes from RGB 
satellite images only. We employed non-overlapping 
grid-based approach with FCN - 8 that obtains 
significantly improved performance than the GIS 
software: eCognition. The average accuracy is: 91.0% 
and the average Intersection over Union (IoU) is: 0.840. 
However, eCognition gets average accuracy: 74.0% and 
average IoU: 0.60 only. We also perform a detail error 
analysis to discuss why some errors still occur in the 
LULC boundary. Our future work includes developing 
a new deep architecture for better boundary 
segmentation. 
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