
Sri Lanka Association for Artificial Intelligence (SLAAI) 15th Annual Sessions-2019

SLAAI - International Conference on Artificial Intelligence Sabaragamuwa University of Sri Lanka 12th December 2019
133

Evaluating the Performance of Language GANs with Small Seed Corpora
Ishadi Jayasinghe and Surangika Ranathunga,

Department of Computer Science and Engineering

University of Moratuwa, Katubedda 10400
Sri Lanka

{1ishadij, 2surangika}@cse.mrt.ac.lk
Abstract. Recently many deep learning models have been
proposed for language generation. Language Generative
Adversarial Nets (language GANs) are one of them. Language
GANs have been presented as giving good results when trained
with large corpora. However, the availability of such large
corpora does not hold all the time, particularly if the requirement
is to generate a larger data set using a relatively smaller seed
corpus. Although extensive evaluations have been carried out to
compare existing language GANs, all these experiments have
used large seed corpora. Therefore they do not give an indication
of the usability of language GANs w.r.t. small corpora. In this
paper, we present a series of experiments that we carried out to
determine the viability of language GANs for language
generation with small corpora. Based on our experiments, we
were able to identify some models that provide acceptable results
that look promising with small data sets.

Keywords: Text

1 Introduction

Recently, neural network models have been used to
successfully generate text in multiple contexts such as
image captioning [1], machine translation [2], and poem
generation [3]. These models can be basically classified
into two main categories: models based on MLE and
Generative Adversarial Nets (GANs) for text generation.
With respect to language GANs, many different models
have been proposed lately. Texygen [4] is a benchmark
framework for evaluating text generation models. This
framework has extensively compared text generation
models against large corpora such as MS COCO captions
[5], and EMNLP2017 W MT News [6]. However, the
requirement for text generation is not limited to these
domains, and the assumption of the availability of a large
seed corpus does not hold all the time. In particular, to
generate large datasets to be used in other Machine
Learning (ML) tasks, automatic text generation is a
favorable solution when manual effort is expensive and
time consuming. For example, GEOS [7] is a system for
solving geometry questions; however the amount of data
they are having is under 500 sentences. With the questions
being complex and diverse, this low quantity inhibits any
application of deep learning models for parsing these
questions. Therefore, having a large seed corpus to
generate text from is not always a valid assumption,
since the lack of the data itself is the problem
sometimes.
Although Texygen has shown how the performance of
these language GANs and models based on Maximum
Likelihood Estimate (MLE) vary with respect to large
datasets, no research has looked into the same when the
dataset is small. However, it is useful to identify models
that give optimal results for small data sets, so that text
generation for new domains with small seed corpora is
viable. Moreover, according to Caccia et al. [8], the

evaluation metrics used by Texygen makes it impossible
to compare two given models. Therefore, we cannot
anyways use the facts from Texygen to correctly
benchmark the performance of Natural Language
Generation (NLG) models. Caccia et al. [8] proposed
Temperature sweep for comparing models more
accurately and we have adopted this approach in our work.
 In this research, we analyze the applicability of the
state-of-the-art NLG models to generate large datasets
from small corpora. We evaluate the vanilla MLE
language model [4] and GANs (SeqGAN [9], TextGAN
[10], LeakGAN [6], and GSGAN [11]) using small
datasets extracted from the datasets used in Texygen. We
also analyze the applicability of these models in terms of
inherent properties of the reference dataset. Finally, we
enhance Texygen [4] to (i) measure the performance of
text generation models accurately with temperature
sweep, and (ii) analyze the performance of language
models over a set of different dataset sizes in a given
range.

From our experiments, we could see GSGAN and
TextGAN are not suitable to be applied on low-resourced
domains. Interestingly, we could observe that MLE based
models performing better than much complex GANs. In
addition, the ranking of models based on performance was
observed to be invariant over the different datasets. I.e. if
the model A performed better than model B on the first
dataset, A performed better than B on the second dataset
too. However, the performance scores of all models
decrease when the dataset became complex

2 Related Work

Text generation: There is a recent emergence in research
in text generation [1, 2, 3]. With respect to text generation,
we can basically classify the tasks into two categories; text
generation in the supervised setting and in the
unsupervised setting [12]. In the supervised setting, the
goal is to to generate a text similar to a target set. From the
above examples, image captioning, and machine
translation fall under this approach. In the second setting,
where the task is unsupervised, the aim is to generate
samples which are following a probability distribution
similar (or close) to the probability distribution of a given
reference set. In simpler terms, the models are expected to
generate samples that look like reference samples.
 Text generation tasks such as the ones mentioned
above have successfully been implemented using neural
network models [1, 2, 3]. Basically two main variants of
these models can be identified; models based on
Maximum Likelihood Estimate (MLE) and language
GANs. In principal, MLE models generate texts using the
context of prior generated words. During the training
phase, next word of the sequence is predicted based on the

Sri Lanka Association for Artificial Intelligence (SLAAI) 15th Annual Sessions-2019

SLAAI - International Conference on Artificial Intelligence Sabaragamuwa University of Sri Lanka 12th December 2019
134

ground truth words, and in the inference phase, the
prediction is done using already predicted words [13, 6].
Generative Adversarial Nets (GAN) [14] have been able
to make significant advances in generation of synthetic
data similar to real data. Two neural networks are used
here; the generator is responsible for generating realistic

differentiate synthetic and real data accurately. Gradient
of the training error from the discriminator is used to train
the generator.
 There are multiple identified issues with the MLE
approach. Firstly, there is no appropriate metric to
evaluate the output of these models [6]. As discussed
above, MLE models use ground truth words as the context
in the training phase while predicted words are used as the
context during the inference phase. This discrepancy
makes MLE models suffer from exposure bias [13,6].
Scheduled Sampling introduced by Bengio et al. [15] to
address the latter problem was proved fundamentally
inconsistent by Huszar [13].
 Original setting of GANs works well when the GAN is
operating on continuous data (image pixel values).
However, when it comes to text generation, GANs have to
deal with discrete tokens (sequence words) that are non-
differentiable. Therefore the usage of GANs is rather
challenging due to the difficulty of backpropagation
through these random discrete variables [16].
 Recent attempts to face this challenge could be
classified to two categories. Reinforcement Learning (RL)
based approaches model the task as a sequential decision
making problem. GANs belonging to this category use
policy gradient techniques for optimization. SeqGAN by
Yu et al. [9] is an example for this approach, but one of the
main drawbacks of this GAN is that the generator only
gets the reward at the end of generating the whole
sequence, thus making it difficult for the generator to
sufficiently learn the distribution [6]. MaliGAN [16] uses
a modified optimization algorithm to reduce high variance
caused with the original form. RankGAN[17] replaces
the original discriminator, which is a binary classifier
with a ranking to reduce the gradient vanishing
problem experienced with the binary form. This
replacement is also a solution for the information given
by the binary classifier being inadequate. Model
collapsing refers to the problem of a model generating
samples only from a limited area of the latent space
i.e. the samples being less in diversity with each other.
The discriminator being a binary classifier also
contributes to this problem [6]. LeakGAN [6] was
proposed to mitigate the instability issues faced during the
training phase under the standard RL approach. Here, the
generator is given the access to the feature representation
learned by the discriminator. This specifically improves
the generation of long text as this brings more information
to the generator network compared to the single binary
signal in most of the previous GANs. Despite the
performance enhancements promised by above GANs that
follow RL approach, still the high variance gradient they
result makes the optimization challenging [12, 18, 10].

RL-free approach adheres to the original approach of
GANs without incorporating ideas in RL. This approach
does not yield gradients with high variance, so the GANs
here are more stable and easier to train compared to the

first category. TextGAN [10], GSGAN [11], and FMGAN
[12] have adopted this approach and have generally
reported better results compared to GANs in the previous
approach.

1.3 Evaluation of Text Generation Models

When a generative model is trained, it attempts to learn a
probability distribution that is similar to the original
probability distribution of the training dataset. Therefore,
the perfect measure would be to measure the distance
between the two probability distributions, which is called
the estimation error. However this is not practically
feasible as we cannot use the total latent space to
generate samples, and the reference set itself might not be
fully representing its distribution. Therefore, some other
metrics have been adopted which are more feasible in a
practical setting. Test-BLEU is one such score that
measures the similarity between two sets of text. It scores
similar n-grams and their frequency. Therefore, this
reflects sample quality. Most GANs (eg. RankGAN [17],
MaliGAN [16], TextGAN [10], and LeakGAN [6]) focus
only on sample quality in their performance comparisons
[8]. This method is severely flawed that if a GAN
generates a single quality sentence repeatedly, it will be
able to get a perfect score. Moreover, model collapsing is
a known issue in GANs, so they would anyways be
biased towards generating sentences with a less diversity.
 Self-BLEU, a score to measure the diversity of a
generated set of samples was proposed by Zhu et al.
[19]. Here, the samples are analyzed against itself, so a low
score (low similarity) means the samples are much
diverse. Even though this makes the problem above
solved, this makes the comparison of GANs difficult. For
an instance, consider figure 1a where the two markers
represent the scores of two GANs named A and B. Here,
GAN A has a better diversity (low self-BLEU), but a low
quality (low test-BLEU). GAN B has the opposite; a better
quality, but a poor diversity. Hence this graph is not
sufficient to decide on the better performing GAN.
Texygen [4] is a benchmark framework for evaluating text
generation models. This framework scores quality (using
metrics such as test-BLEU, EmbSim) and diversity (using
metrics such as self-BLEU) separately, so suffers from the
same issue.
 Boltzmann temperature [20] refers to the parameter

results in generating data with a high diversity. Similarly,
low temperature values make the model stick to generating
quality samples, which would not be much diverse from
the reference set. Caccia et al. [8] proposed a novel
approach for evaluating text generation models based on
this scenario. This involves moving a model across a set
of temperature values so that its performance on both
diversity and quality aspects could be assessed. With this

the temperature curve of another model (refer figure 1b),
we can say the first model is better than the second. This
allows us to use the area under the curve as a performance
measure [8].

Sri Lanka Association for Artificial Intelligence (SLAAI) 15th Annual Sessions-2019

SLAAI - International Conference on Artificial Intelligence Sabaragamuwa University of Sri Lanka 12th December 2019
135

 (a) (b)

Fig. 13. (a) Two example NLG models named A and B
plotted on a graph with the x axis as self-BLEU and the y-
axis as test-BLEU. (b) Two example temperature curves
of two NLG models. The axes have the inverse metrics,
so the lower is better in both axes. When it comes to the
model with the blue curve, in any given quality, it has a
better diversity than the model with the red curve.
Therefore, this graph is sufficient enough to claim that the
model with blue curve is better complex.

3 Experiment

3.3 Evaluation of Text Generation Models

Our aim is to analyze the applicability of text generation
models for the task of generating more data for low-
resourced domains (i.e. training dataset size below
1000).
 All our experiments are based on the models and data
used in Texygen [4]. We experimented with two datasets:
MS COCO captions [5], and EMNLP2017 WMT News
[6]. Table 1 gives a summary of statistics of these two
datasets. We experiment for the dataset size from 200 to
1000 in 200 step sizes as our focus is on low-resource
domains. For each data size, we increased the pre-epoch
count by 10 starting from 10 and adversarial epoch count
by 10 starting from 20. These values were selected based
on the values used by Texygen and dataset size. To deal
with the large variance that is natural when extracting a
small dataset from a big dataset, we experimented with
three different partitions for a given large dataset size and
calculate the average. First we separate three random
datasets of size 1000 from the training dataset as base

training sets. These three are used to get data needed for
experiments. For an instance, if we are evaluating when
the dataset size is 400, we take three sets of data sized 400
from the three base training sets. Same process is followed
with the test sets, but with altered numbers. We take 5 sets
of size 1000 as testing sets. In order to analyze the trend
of performance with increasing dataset sizes, we kept test
dataset size(200) constant while varying training set sizes.
 After training a model with a training set, we generate
testsets of size 200 for a set of temperatures ranging from
0.001 to 2.0 with 0.5 step sizes. Based on work by Caccia
et al. [8] the temperature value could be varied starting
from zero to positive integers, and normally, the syntax
breaks down losing the coherence of a sentence when the
value is increased above 1.0. Therefore, we took 0.001 as
the value equivalent to zero (to reduce overflowing/under-
flowing issues due to dealing with zero) and 2.0 as the
temperature on the extreme end. Compared to each test set,
we calculate the test-BLEU and self-BLEU scores with the
n-gram count 3. These scores are averaged over the test
sets. Then this average scores for each temperature is
again averaged over the scores from the other two training
sets. This is done for sizes ranging from 200. At the end of
this process, we get a test-BLEU score and a self-BLEU
score per temperature per size. Then, for each size, we can

-axis and the
selfBLEU as the y-axis. As the performance is directly
proportional to the test-BLEU and inversely proportional
to the self-BLEU, the area under this temperature curve is
an accurate indicator [8]. Therefore, for each size, we need
to the area under its temperature curve. We divide this task
into three steps; (i) compute the area under the curve w.r.t.
x-axis (this area depends on the selfBLEU score and
independent on testBLEU), (ii) compute the area under the
curve w.r.t. y- BLEU
score and independent on selfBLEU), and (iii) get the total
area as the sum of the areas calculated in the two steps
above. The area calculated under step (i) relates to the
quality of the generated sample. The lesser this value, the
more quality the sample. Similarly, the area calculated
under step (ii) relates to the diversity of the generated
sample. The lesser this value, the more diverse the sample.
The sum of these two values could be taken as the
performance indicator for a given training set size for
a given GAN. Algorithm 1 explains this. We take these
area values to plot the final result graph.

Table 1. EMNLP News Dataset

 Train Test Vocabulary
size

Average
length

MS COCO captions 120,000 10,000 27,842 11
EMNLP2017 WMT News 278,686 10,000 5728 28

3.2 Experiments with MS COCO Captions

COCO captions [5] dataset contains set of image captions
that are smaller in length compared to EMNLP News
dataset (refer Table 1).
 Figure 4a indicates the area of the temperature curve
w.r.t (1-testBLEU) axis. Here, we can see GSGAN and
TextGAN to have the largest values for all data sizes

compared to other models. This implies that they are the
worst performing GANs with respect to quality. We can
see other models in an improving trend towards decreasing
in area values (increasing quality). Figure 4b indicates the
area of the temperature curve w.r.t selfBLEU axis. This
graph relates to the diversity of generated data and lower
the area, the better the model at producing diverse data.
We can see GSGAN going almost to zero when the dataset
size is 1000. At this size, the generated samples from

Sri Lanka Association for Artificial Intelligence (SLAAI) 15th Annual Sessions-2019

SLAAI - International Conference on Artificial Intelligence Sabaragamuwa University of Sri Lanka 12th December 2019
136

GSGAN have just spaces except for a couple of words for
the whole sample i.e. the generated set here has no more
than 20 words. Analyzing the reason behind this scenario
is out of the scope for this paper. However, this low count
of words results in very low selfBLEU scores that the area
has gone to zero or near zero. It can be seen that LeakGAN
and seqGAN are on an increasing trend while MLE is seen
to be diminishing on the increasing trend. TextGAN seems
to follow the trend of MLE. Figure 2 is the sum of above
discussed two areas; so the lower is better. Due to the
scenario discussed above, the negative slope of GSGAN

is misleading here. Interestingly, we can see how MLE is
in the bottom compared to the rest of the models. This
implies it performs the best in quality and diversity
combined. LeakGAN and SeqGAN could be seen
performing alike as the size grows. Even though TextGAN
seems performing, we saw it has a low quality from Figure
4a. Figure 2 is also misleading due the fact it shows as if
TextGAN gets close to LeakGAN over the end, but
TextGAN had the worst quality along with GSGAN as per
the figure 4a.

Fig. 2: Experiment results on MS COCO dataset

3.2 Experiments with EMNLP2017WMT News Dataset

Sentences of this dataset is much complex and have a
longer average length compared to the previous COCO
dataset. Similar to the graphs for COCO Dataset, figure 4c
indicates the area of the temperature curve w.r.t (1-
testBLEU) axis. This is quite similar to figure 4a in that
GSGAN and TextGAN shows the same worse behavior.
Here, LeakGAN produces samples with the best quality in
all the sizes while MLE and SeqGAN perform quite
similarly. Figure 4d indicates the area of the temperature
curve w.r.t selfBLEU axis. As explained above, the values
in this graph relates to the diversity; a lower value means
a higher diversity. Interestingly, MLE seems to be winning
here as well in that it is located at the bottom. GSGAN
behaves quite different to the way it behaved during the
experiments with COCO dataset. With COCO dataset,

GSGAN generated a few words (around 20 words for the
whole sample) with a lot of spaces. Here, it generates a
small set of words repetitively. This makes its diversity
score low. This happens when the dataset size is low. As
the dataset size grows, GSGAN turns back to its normal
behaviour with COCO dataset generating only a few
words with a lot of spaces. This could be seen from 4d.
LeakGAN seems to be producing more diverse data when
the datasize increases. SeqGAN seems to be performing
quite acceptable compared to TextGAN and LeakGAN.
Figure 3 sums up these two areas. It can be observed that
GSGAN making way towards lower values when the size
is 1000. Similar to figure 2, representation for TextGAN
is a bit misleading given its very low quality. Apart from
those facts, we can see MLE as the best performing model
along with SeqGAN and LeakGAN.

Fig. 3: Experiment results on EMNLP NEWS dataset

Sri Lanka Association for Artificial Intelligence (SLAAI) 15th Annual Sessions-2019

SLAAI - International Conference on Artificial Intelligence Sabaragamuwa University of Sri Lanka 12th December 2019
137

4 Conclusions and Future works

In this work, we studied the applicability of state of the art
text generation models for the task of increasing dataset
size in low resource domains. When it comes to dataset
sizes below 1000, we observed GSGAN, and TextGAN to
perform worse than other models in both datasets. Hence,
we can come to a solid conclusion that GSGAN and
TextGAN are not suitable to be applied on low resource
domains no matter what qualities the given dataset is
having. On the other hand, SeqGAN and LeakGAN
showed a fairly similar behavior in both datasets. It was
interesting that MLE turned to be performing the best in
both domains in both quality and diversity aspects despite
more complex GANs it was compared with. This proves
the claim made by Caccia et al. [8] that MLE models are
underestimated remains true when it comes to small
datasets as well.
 Furthermore, we extended Texygen [4] to (i) be
capable of evaluating text generation models more
accurately using Temperature Sweep [8], and (ii) to be
capable of evaluating the trend of the performance of text
generation models with dataset size increasing. Our work
can be accessed from this repository1
 There exists much newer language GANs that claim to
be performing better than some GANs we have evaluated
(eg. FM-GAN [12]), which are not evaluated in Texygen.

We need to evaluate those as well, but to make it a fair
comparison, we should carry out the evaluations in a
similar context. TexyGen provides the infrastructure for
this. Therefore, by integrating recent GANs to Texygen, it
would be much easier and accurate to make evaluations
and comparisons. Moreover, we only experimented for
sizes under 1000 in 200 steps. There is space to fine tune
this considering more training dataset sizes. We kept the
size of the testing size (200) throughout the experiments.
It would be interesting if we find a way to determine these
values based on the qualities of the reference dataset.
Intuitively, if a dataset is more complex (higher
vocabulary, longer average length, low self-BLEU, etc.)
than another dataset, we need more data to start generating
data for the first dataset than the second dataset. This was
apparent from our experiments too in that EMNLP NEWS
dataset needed more data than 1000 to become equal to the
unscaled area scores of the models which were trained
with the COCO dataset. We believe it would be very much
useful if we could come up with a mechanism to decide on
a minimum size of data needed for a given reference set in
order to generate more data. One approach to this would
be fixating on an unscaled area score and increasing the
dataset size till models reach that score. Experimenting
this with a set of datasets with distinguishable features
such as vocabulary size, average sequence length, self-
BLEU would make it possible to get some idea on the
effect of each feature on the target minimum value. Our
research provides infrastructure for this.

Sri Lanka Association for Artificial Intelligence (SLAAI) 15th Annual Sessions-2019

SLAAI - International Conference on Artificial Intelligence Sabaragamuwa University of Sri Lanka 12th December 2019

138

Algorithm 1: Area generate area coordinates for different training dataset sizes for a given GAN
Input: Two finite sentence sets Tr and Ts for training and test set respectively, initSize, stepSize, and the finalSize of
the dataset sizes evaluated
Output: (size, area) coordinates for the considered GAN
1 Tr1, Tr2, Tr3 andom rows from Tr without replacement
2 Te1, Te2, Te3, Te4, Te5

1, Tr2, Tr3}
1, Te2, Te3, Te4, Te5}

14 for tr in Tr do

 {tr1}

18 Train the GAN with EvalTr[itr]

20
21 for temp in Temps do

 /* compare this with the 5 testing sets, average the

scores over the 5 testing sets */
 {Average of the test-BLEU scores}
 {Average of the self-BLEU scores}

/* list of average scores for a single training set */
 {TestBLEUs}
 {SelfBLEUs}

/* average test-BLEU and self-BLEU scores over 3 training sets */

/* 1 testBLEU */

30
 (tbArea + sbArea)

Sri Lanka Association for Artificial Intelligence (SLAAI) 15th Annual Sessions-2019

SLAAI - International Conference on Artificial Intelligence Sabaragamuwa University of Sri Lanka 12th December 2019

139

 (a) (b)

(c) (d)

selfBLEU
axis (d) selfBLEU axis

References

1. Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. Show and tell: A neural image
caption generator. In Proceedings of the IEEE
conference on computer vision and pattern
recognition, pages 3156 3164, 2015.

2. Zhen Yang, Wei Chen, Feng Wang, and Bo Xu.
Improving neural machine translation with
conditional sequence generative adversarial nets.
arXiv preprint arXiv:1703.04887, 2017.

3. Xingxing Zhang and Mirella Lapata. Chinese
poetry generation with recurrent neural networks. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 670 680, 2014.

4. Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. Texygen:
A benchmarking platform for text generation
models. arXiv preprint arXiv:1802.01886, 2018.

5. Tsung-Yi Lin, Michael Maire, Serge Belongie,
James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In European conference
on computer vision, pages 740 755. Springer, 2014.

6. Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong
Yu, and Jun Wang. Long text generation via
adversarial training with leaked information. In
Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

7. Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi,
Oren Etzioni, and Clint Malcolm.

 Solving geometry problems: Combining text and
diagram interpretation. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Pro cessing, pages 1466 1476, 2015.

8. Massimo Caccia, Lucas Caccia, William Fedus,
Hugo Larochelle, Joelle Pineau, and Laurent
Charlin. Language gans falling short. arXiv preprint
arXiv:1811.02549,

 2018.
9. Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.

Seqgan: Sequence generative adversarial nets with
policy gradient. In AAAI, pages 2852 2858, 2017.

10. Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo
Henao, Dinghan Shen, and Lawrence Carin.
Adversarial feature matching for text generation. In
Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 4006

 4015. JMLR. org, 2017.
11. Matt J Kusner and Jos´e Miguel Hernandez-Lobato.

Gans for sequences of discrete elements with the
gumbel-softmax distribution. arXiv preprint
arXiv:1611.04051, 2016.

12. Liqun Chen, Shuyang Dai, Chenyang Tao, Haichao
Zhang, Zhe Gan, Dinghan Shen, Yizhe Zhang,
Guoyin Wang, Ruiyi Zhang, and Lawrence Carin.
Adversarial text generation via feature-
distance. In Advances in Neural Information
Processing Systems, pages 4671 4682, 2018.

13. Ferenc Huszar. How (not) to train your generative
model: Scheduled sampling, likelihood, adversary?
arXiv preprint arXiv:1511.05101, 2015.

Sri Lanka Association for Artificial Intelligence (SLAAI) 15th Annual Sessions-2019

SLAAI - International Conference on Artificial Intelligence Sabaragamuwa University of Sri Lanka 12th December 2019

140

14. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative
adversarial nets. In Advances in neural information
processing systems, pages 2672 2680, 2014.

15. Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. Scheduled sam pling for sequence
prediction with recurrent neural networks. In
Advances in Neural Information Processing
Systems, pages 1171 1179, 2015.

16. Tong Che, Yanran Li, Ruixiang Zhang, R Devon
Hjelm, Wenjie Li, Yangqiu Song, and Yoshua
Bengio. Maximum-likelihood augmented discrete
generative adversar ial networks. arXiv preprint
arXiv:1702.07983, 2017.

17. Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou
Zhang, and Ming-Ting Sun. Ad- versarial ranking

for language generation. In Advances in Neural
Information Processing Systems, pages 3155 3165,
2017.

18. Chris J Maddison, Andriy Mnih, and Yee Whye Teh.
The concrete distri bution: A continuous relaxation
of discrete random variables. arXiv preprint
arXiv:1611.00712, 2016.

19. Sidi Lu, Yaoming Zhu, Weinan Zhang, Jun Wang,
and Yong Yu. Neural text generation: past, present
and beyond. arXiv preprint arXiv:1803.07133, 2018.

20. David H Ackley, Geoffrey E Hinton, and Terrence J
Sejnowski. Connectionist models and their
implications: Readings from cognitive science.
chapter a learning algorithm for boltzmann
machines, 1988.

