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Abstract. Recently many deep learning models have been 
proposed for language generation. Language Generative 
Adversarial Nets (language GANs) are one of them. Language 
GANs have been presented as giving good results when trained 
with large corpora. However, the availability of such large 
corpora does not hold all the time, particularly if the requirement 
is to generate a larger data set using a relatively smaller seed 
corpus. Although extensive evaluations have been carried out to 
compare existing language GANs, all these experiments have 
used large seed corpora. Therefore they do not give an indication 
of the usability of language GANs w.r.t. small corpora. In this 
paper, we present a series of experiments that we carried out to 
determine the viability of language GANs for language 
generation with small corpora. Based on our experiments, we 
were able to identify some models that provide acceptable results 
that look promising with small data sets. 
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1   Introduction 

Recently, neural network models have been used to 
successfully generate text in multiple contexts such as 
image captioning [1], machine translation [2], and poem 
generation [3]. These models can be basically classified 
into two main categories: models based on MLE and 
Generative Adversarial Nets (GANs) for text generation. 
With respect to language GANs, many different models 
have been proposed lately. Texygen [4] is a benchmark 
framework for evaluating text generation models. This 
framework has extensively compared text generation 
models against large corpora such as MS COCO captions 
[5], and EMNLP2017 W MT News [6]. However, the 
requirement for text generation is not limited to these 
domains, and the assumption of the availability of a large 
seed corpus does not hold all the time. In particular, to 
generate large datasets to be used in other Machine 
Learning (ML) tasks, automatic text generation is a 
favorable solution when manual effort is expensive and 
time consuming. For example, GEOS [7] is a system for 
solving geometry questions; however the amount of data 
they are having is under 500 sentences. With the questions 
being complex and diverse, this low quantity inhibits any 
application of deep learning models for parsing these 
questions.  Therefore,  having  a large  seed  corpus  to 
generate  text  from  is not  always  a  valid  assumption,  
since  the  lack  of  the  data  itself  is  the  problem 
sometimes. 
Although Texygen has shown how the performance of 
these language GANs and models  based  on  Maximum  
Likelihood  Estimate  (MLE)  vary  with  respect  to large 
datasets, no research has looked into the same when the 
dataset is small. However, it is useful to identify models 
that give optimal results for small data sets, so that text 
generation for new domains with small seed corpora is 
viable. Moreover, according to Caccia et al. [8], the 

evaluation metrics used by Texygen makes it impossible 
to compare two given models. Therefore, we cannot 
anyways use the facts from Texygen to correctly 
benchmark the performance of Natural Language 
Generation (NLG) models. Caccia et al. [8] proposed 
Temperature sweep for comparing models more 
accurately and we have adopted this approach in our work. 
 In this research, we analyze the applicability of the 
state-of-the-art NLG models to generate large datasets 
from small corpora. We evaluate the vanilla MLE 
language model [4] and GANs (SeqGAN [9], TextGAN 
[10], LeakGAN [6], and GSGAN [11]) using small 
datasets extracted from the datasets used in Texygen. We 
also analyze the applicability of these models in terms of 
inherent properties of the reference dataset. Finally, we 
enhance Texygen [4] to (i) measure the performance of 
text generation models accurately with temperature 
sweep, and (ii) analyze the performance of language 
models over a set of different dataset sizes in a given 
range. 

From our experiments, we could see GSGAN and 
TextGAN are not suitable to be applied on low-resourced 
domains. Interestingly, we could observe that MLE based 
models performing better than much complex GANs. In 
addition, the ranking of models based on performance was 
observed to be invariant over the different datasets. I.e. if 
the model A performed better than model B on the first 
dataset, A performed better than B on the second dataset 
too. However, the performance scores of all models 
decrease when the dataset became complex  

2   Related Work 

Text generation: There is a recent emergence in research 
in text generation [1, 2, 3]. With respect to text generation, 
we can basically classify the tasks into two categories; text 
generation in the supervised setting and in the 
unsupervised setting [12]. In the supervised setting, the 
goal is to to generate a text similar to a target set. From the 
above examples, image captioning, and machine 
translation fall under this approach. In the second setting, 
where the task is unsupervised, the aim is to generate 
samples which are following a probability distribution 
similar (or close) to the probability distribution of a given 
reference set. In simpler terms, the models are expected to 
generate samples that look like reference samples. 
 Text generation tasks such as the ones mentioned 
above have successfully been implemented using neural 
network models [1, 2, 3]. Basically two main variants of 
these models can be identified; models based on 
Maximum Likelihood Estimate (MLE) and language 
GANs. In principal, MLE models generate texts using the 
context of prior generated words. During the training 
phase, next word of the sequence is predicted based on the 
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ground truth words, and in the inference phase, the 
prediction is done using already predicted words [13, 6]. 
Generative Adversarial Nets (GAN) [14] have been able 
to make significant advances in generation of synthetic 
data similar to real data. Two neural networks are used 
here; the generator is responsible for generating realistic 

differentiate synthetic and real data accurately. Gradient 
of the training error from the discriminator is used to train 
the generator. 
 There are multiple identified issues with the MLE 
approach. Firstly, there is no appropriate metric to 
evaluate the output of these models [6]. As discussed 
above, MLE models use ground truth words as the context 
in the training phase while predicted words are used as the 
context during the inference phase. This discrepancy 
makes MLE models suffer from exposure bias [13,6]. 
Scheduled Sampling introduced by Bengio et al. [15] to 
address the latter problem was proved fundamentally 
inconsistent by Huszar [13]. 
 Original setting of GANs works well when the GAN is 
operating on continuous data (image pixel values). 
However, when it comes to text generation, GANs have to 
deal with discrete tokens (sequence words) that are non-
differentiable. Therefore the usage of GANs is rather 
challenging due to the difficulty of backpropagation 
through these random discrete variables [16]. 
 Recent attempts to face this challenge could be 
classified to two categories. Reinforcement Learning (RL) 
based approaches model the task as a sequential decision 
making problem. GANs belonging to this category use 
policy gradient techniques for optimization. SeqGAN by 
Yu et al. [9] is an example for this approach, but one of the 
main drawbacks of this GAN is that the generator only 
gets the reward at the end of generating the whole 
sequence, thus making it difficult for the generator to 
sufficiently learn the distribution [6]. MaliGAN [16] uses 
a modified optimization algorithm to reduce high variance 
caused with the original form.  RankGAN[17]  replaces  
the  original  discriminator,  which  is  a  binary classifier  
with  a  ranking  to  reduce  the  gradient  vanishing  
problem  experienced with  the  binary  form.  This  
replacement  is  also  a  solution  for  the  information given  
by  the  binary  classifier  being  inadequate.  Model  
collapsing  refers  to  the problem  of  a  model  generating  
samples  only  from  a  limited  area  of  the  latent space  
i.e.  the  samples  being  less  in  diversity  with  each  other.  
The  discriminator  being  a  binary  classifier  also  
contributes  to  this  problem  [6].  LeakGAN  [6] was 
proposed to mitigate the instability issues faced during the 
training phase under the standard RL approach. Here, the 
generator is given the access to the feature representation 
learned by the discriminator. This specifically improves 
the generation of long text as this brings more information 
to the generator network compared to the single binary 
signal in most of the previous GANs. Despite the 
performance enhancements promised by above GANs that 
follow RL approach, still the high variance gradient they 
result makes the optimization challenging [12, 18, 10]. 

RL-free approach adheres to the original approach of 
GANs without incorporating ideas in RL. This approach 
does not yield gradients with high variance, so the GANs 
here are more stable and easier to train compared to the 

first category. TextGAN [10], GSGAN [11], and FMGAN 
[12] have adopted this approach and have generally 
reported better results compared to GANs in the previous 
approach.  

1.3   Evaluation of Text Generation Models 

When a generative model is trained, it attempts to learn a 
probability distribution that is similar to the original 
probability distribution of the training dataset. Therefore, 
the perfect measure would be to measure the distance 
between the two probability distributions, which is called 
the estimation error. However this is not practically 
feasible  as  we  cannot  use  the  total  latent  space  to  
generate samples, and the reference set itself might not be 
fully representing its distribution. Therefore, some other 
metrics have been adopted which are more feasible in a 
practical setting. Test-BLEU is one such score that 
measures the similarity between two sets of text. It scores 
similar n-grams and their frequency. Therefore, this 
reflects sample quality. Most GANs (eg. RankGAN [17], 
MaliGAN [16], TextGAN [10], and LeakGAN [6]) focus 
only on sample quality in their performance comparisons 
[8]. This method is severely flawed that if a GAN 
generates a single quality sentence repeatedly, it will be 
able to get a perfect score. Moreover, model  collapsing  is  
a  known  issue  in  GANs,  so  they  would  anyways  be  
biased towards generating sentences with a less diversity. 
 Self-BLEU,  a  score  to  measure  the  diversity  of  a  
generated  set  of  samples  was proposed by Zhu et al. 
[19]. Here, the samples are analyzed against itself, so a low 
score (low similarity) means the samples are much 
diverse. Even though this makes the problem above 
solved, this makes the comparison of GANs difficult. For 
an instance, consider figure 1a where the two markers 
represent the scores of two GANs named A and B. Here, 
GAN A has a better diversity (low self-BLEU), but a low 
quality (low test-BLEU). GAN B has the opposite; a better 
quality, but a poor diversity. Hence this graph is not 
sufficient to decide on the better performing GAN. 
Texygen [4] is a benchmark framework for evaluating text 
generation models. This framework scores quality (using 
metrics such as test-BLEU, EmbSim) and diversity (using 
metrics such as self-BLEU) separately, so suffers from the 
same issue. 
 Boltzmann temperature [20] refers to the parameter 

results in generating data with a high diversity. Similarly, 
low temperature values make the model stick to generating 
quality samples, which would not be much diverse from 
the reference set. Caccia et al. [8] proposed a novel 
approach for evaluating text generation models based on 
this scenario. This involves moving a model across a set 
of temperature values so that its performance on both 
diversity and quality aspects could be assessed. With this 

the temperature curve of another model (refer figure 1b), 
we can say the first model is better than the second. This 
allows us to use the area under the curve as a performance 
measure [8]. 
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Fig. 13. (a) Two example NLG models named A and B 
plotted on a graph with the x axis as self-BLEU and the y-
axis as test-BLEU. (b) Two example temperature curves 
of two NLG models.  The axes have the inverse metrics, 
so the lower is better in both axes. When it comes to the 
model with the blue curve, in any given quality, it has a 
better diversity than the model with the red curve. 
Therefore, this graph is sufficient enough to claim that the 
model with blue curve is better complex.   

3   Experiment 

3.3   Evaluation of Text Generation Models 

Our aim is to analyze the applicability of text generation 
models for the task of generating more data for low-
resourced domains (i.e. training dataset size below 
1000). 
 All our experiments are based on the models and data 
used in Texygen [4]. We experimented with two datasets: 
MS COCO captions [5], and EMNLP2017 WMT News 
[6]. Table 1 gives a summary of statistics of these two 
datasets. We experiment for the dataset size from 200 to 
1000 in 200 step sizes as our focus is on low-resource 
domains. For each data size, we increased the pre-epoch 
count by 10 starting from 10 and adversarial epoch count 
by 10 starting from 20. These values were selected based 
on the values used by Texygen and dataset size. To deal 
with the large variance that is natural when extracting a 
small dataset from a big dataset, we experimented with 
three different partitions for a given large dataset size and 
calculate the average. First we separate three random 
datasets of size 1000 from the training dataset as base 

training sets. These three are used to get data needed for 
experiments. For an instance, if we are evaluating when 
the dataset size is 400, we take three sets of data sized 400 
from the three base training sets. Same process is followed 
with the test sets, but with altered numbers.  We take 5 sets 
of size 1000 as testing sets. In order to analyze the trend 
of performance with increasing dataset sizes, we kept test 
dataset size(200) constant while varying training set sizes. 
 After training a model with a training set, we generate 
testsets of size 200 for a set of temperatures ranging from 
0.001 to 2.0 with 0.5 step sizes. Based on work by Caccia 
et al. [8] the temperature value could be varied starting 
from zero to positive integers, and normally, the syntax 
breaks down losing the coherence of a sentence when the 
value is increased above 1.0. Therefore, we took 0.001 as 
the value equivalent to zero (to reduce overflowing/under-
flowing issues due to dealing with zero) and 2.0 as the 
temperature on the extreme end. Compared to each test set, 
we calculate the test-BLEU and self-BLEU scores with the 
n-gram count 3. These scores are averaged over the test 
sets. Then this average scores for each temperature is 
again averaged over the scores from the other two training 
sets. This is done for sizes ranging from 200. At the end of 
this process, we get a test-BLEU score and a self-BLEU 
score per temperature per size. Then, for each size, we can 

-axis and the 
selfBLEU as the y-axis. As the performance is directly 
proportional to the test-BLEU and inversely proportional 
to the self-BLEU, the area under this temperature curve is 
an accurate indicator [8]. Therefore, for each size, we need 
to the area under its temperature curve. We divide this task 
into three steps; (i) compute the area under the curve w.r.t. 
x-axis (this area depends on the selfBLEU score and 
independent on testBLEU), (ii) compute the area under the 
curve w.r.t. y- BLEU 
score and independent on selfBLEU), and (iii) get the total 
area as the sum of the areas calculated in the two steps 
above. The area calculated under step (i) relates to the 
quality of the generated sample. The lesser this  value,  the  
more  quality  the  sample.  Similarly, the area calculated 
under step (ii) relates to the diversity of the generated 
sample. The lesser this value, the more diverse the sample. 
The sum of these two values could be  taken  as  the  
performance  indicator  for  a  given  training  set  size  for  
a  given GAN.  Algorithm 1 explains this.  We take these 
area values to plot the final result graph. 

 
Table 1. EMNLP News Dataset 

 Train      Test      Vocabulary 
size 

Average 
length 

MS COCO captions 120,000               10,000 27,842 11 
EMNLP2017 WMT News 278,686 10,000 5728 28 

 

3.2   Experiments with MS COCO Captions 

COCO captions [5] dataset contains set of image captions 
that are smaller in length compared to EMNLP News 
dataset (refer Table 1). 
 Figure 4a indicates the area of the temperature curve 
w.r.t (1-testBLEU) axis. Here, we can see GSGAN and 
TextGAN to have the largest values for all data sizes 

compared to other models. This implies that they are the 
worst performing GANs with respect to quality. We can 
see other models in an improving trend towards decreasing 
in area values (increasing quality). Figure 4b indicates the 
area of the temperature curve w.r.t selfBLEU axis. This 
graph relates to the diversity of generated data and lower 
the area, the better the model at producing diverse data. 
We can see GSGAN going almost to zero when the dataset 
size is 1000. At this size, the generated samples from 
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GSGAN have just spaces except for a couple of words for 
the whole sample i.e. the generated set here has no more 
than 20 words. Analyzing the reason behind this scenario 
is out of the scope for this paper. However, this low count 
of words results in very low selfBLEU scores that the area 
has gone to zero or near zero. It can be seen that LeakGAN 
and seqGAN are on an increasing trend while MLE is seen 
to be diminishing on the increasing trend. TextGAN seems 
to follow the trend of MLE. Figure 2 is the sum of above 
discussed two areas; so the lower is better. Due to the 
scenario discussed above, the negative slope of GSGAN 

is misleading here. Interestingly, we can see how MLE is 
in the bottom compared to the rest of the models. This 
implies it performs the best in quality and diversity 
combined. LeakGAN and SeqGAN could be seen 
performing alike as the size grows. Even though TextGAN 
seems performing, we saw it has a low quality from Figure 
4a. Figure 2 is also misleading due the fact it shows as if 
TextGAN gets close to LeakGAN over the end, but 
TextGAN had the worst quality along with GSGAN as per 
the figure 4a. 

 

 

 

 
 
 

 

 
 

Fig. 2: Experiment results on MS COCO dataset 

3.2 Experiments with EMNLP2017WMT News Dataset 

Sentences of this dataset is much complex and have a 
longer average length compared to the previous COCO 
dataset. Similar to the graphs for COCO Dataset, figure 4c 
indicates the area of the temperature curve w.r.t (1-
testBLEU) axis. This is quite similar to figure 4a in that 
GSGAN and TextGAN shows the same worse behavior. 
Here, LeakGAN produces samples with the best quality in 
all the sizes while MLE and SeqGAN perform quite 
similarly. Figure 4d indicates the area of the temperature 
curve w.r.t selfBLEU axis. As explained above, the values 
in this graph relates to the diversity; a lower value means 
a higher diversity. Interestingly, MLE seems to be winning 
here as well in that it is located at the bottom. GSGAN 
behaves quite different to the way it behaved during the 
experiments with COCO dataset. With COCO dataset, 

GSGAN generated a few words (around 20 words for the 
whole sample) with a lot of spaces. Here, it generates a 
small set of words repetitively. This makes its diversity 
score low. This happens when the dataset size is low. As 
the dataset size grows, GSGAN turns back to its normal 
behaviour with COCO dataset generating only a few 
words with a lot of spaces. This could be seen from 4d. 
LeakGAN seems to be producing more diverse data when 
the datasize increases. SeqGAN seems to be performing 
quite acceptable compared to TextGAN and LeakGAN. 
Figure 3 sums up these two areas. It can be observed that 
GSGAN making way towards lower values when the size 
is 1000. Similar to figure 2, representation for TextGAN 
is a bit misleading given its very low quality. Apart from 
those facts, we can see MLE as the best performing model 
along with SeqGAN and LeakGAN. 

 
Fig. 3: Experiment results on EMNLP NEWS dataset 
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4   Conclusions and Future works 

In this work, we studied the applicability of state of the art 
text generation models for the task of increasing dataset 
size in low resource domains. When it comes to dataset 
sizes below 1000, we observed GSGAN, and TextGAN to 
perform worse than other models in both datasets. Hence, 
we can come to a solid conclusion that GSGAN and 
TextGAN are not suitable to be applied on low resource 
domains no matter what qualities the given dataset is 
having. On the other hand, SeqGAN and LeakGAN 
showed a fairly similar behavior in both datasets. It was 
interesting that MLE turned to be performing the best in 
both domains in both quality and diversity aspects despite 
more complex GANs it was compared with. This proves 
the claim made by Caccia et al. [8] that MLE models are 
underestimated remains true when it comes to small 
datasets as well. 
 Furthermore, we extended Texygen [4] to (i) be 
capable of evaluating text generation models more 
accurately using Temperature Sweep [8], and (ii) to be 
capable of evaluating the trend of the performance of text 
generation models with dataset size increasing. Our work 
can be accessed from this repository1 
 There exists much newer language GANs that claim to 
be performing better than some GANs we have evaluated 
(eg. FM-GAN [12]), which are not evaluated in Texygen. 

We need to evaluate those as well, but to make it a fair 
comparison, we should carry out the evaluations in a 
similar context. TexyGen provides the infrastructure for 
this. Therefore, by integrating recent GANs to Texygen, it 
would be much easier and accurate to make evaluations 
and comparisons. Moreover, we only experimented for 
sizes under 1000 in 200 steps. There is space to fine tune 
this considering more training dataset sizes. We kept the 
size of the testing size (200) throughout the experiments. 
It would be interesting if we find a way to determine these 
values based on the qualities of the reference dataset. 
Intuitively, if a dataset is more complex (higher 
vocabulary, longer average length, low self-BLEU, etc.) 
than another dataset, we need more data to start generating 
data for the first dataset than the second dataset. This was 
apparent from our experiments too in that EMNLP NEWS 
dataset needed more data than 1000 to become equal to the 
unscaled area scores of the models which were trained 
with the COCO dataset. We believe it would be very much 
useful if we could come up with a mechanism to decide on 
a minimum size of data needed for a given reference set in 
order to generate more data. One approach to this would 
be fixating on an unscaled area score and increasing the 
dataset size till models reach that score. Experimenting 
this with a set of datasets with distinguishable features 
such as vocabulary size, average sequence length, self-
BLEU would make it possible to get some idea on the 
effect of each feature on the target minimum value. Our 
research provides infrastructure for this. 
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Algorithm 1: Area generate area coordinates for different training dataset sizes for a given GAN 
Input: Two finite sentence sets Tr and Ts for training and test set respectively, initSize, stepSize, and the finalSize of 
the dataset sizes evaluated 
Output: (size, area) coordinates for the considered GAN 
1  Tr1, Tr2, Tr3 andom rows from Tr without replacement 
2  Te1, Te2, Te3, Te4, Te5  

1, Tr2, Tr3} 
1, Te2, Te3, Te4, Te5} 

 
 

 
 
 

 
 

 
 

14            for tr  in Tr  do 
 

 {tr1} 
 

18                    Train the GAN with EvalTr[itr] 
 

20                     
21                    for temp in Temps do 

 
       /* compare this with the 5 testing sets, average the 

scores over the 5 testing sets                     */ 
  {Average of the test-BLEU scores} 
  {Average of the self-BLEU scores} 

/* list of average scores for a single training set        */ 
 {TestBLEUs} 
 {SelfBLEUs} 

 
/* average test-BLEU and self-BLEU scores over 3 training sets */ 

 
/* 1 testBLEU   */ 

 
 

30             
 (tbArea + sbArea) 
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(c)                                                                            (d) 

selfBLEU 
axis (d) selfBLEU axis 
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