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Abstract. Cancer is a genetic disease which begins by 
accumulating mutations in an organ. It is important to understand 
relationship between mutated genes in cancers in order to predict 
the oncogenic patterns. Objective of the following research is to 
identify association rules in Human Nervous system cancers. We 
have analysed fifteen cancer single nucleotide polymorphisms 
(SNPs) mutation datasets in order to generate the association 
rules. Initially, we have performed data purification and data 
enrichment via using Variant Effect Prediction tool and 
Ensemble Genome conversion tool. According to the Central 
Dogma protein mutating SNPs will have the highest influence 
for cancers. In the analysis we considered the protein mutated 
genes for the association rule identification. We have generated 
23 gene level association rules. We have validated the 
association rules with biological evidence. According the results, 
ATRX,TP53>IDH1, TP53,TTN>IDH1  and SMARCA4,TP53> 
IDH1 association rules have biological evidence that they work 
together inside a living cell. 

Keywords: Cancer, Association rules, Mutation, Human 
nervous system 

1. Introduction 

Cancer is a disease in which abnormal cells acquire the 
ability to divide without control and invade other tissues. 
According to the central dogma [1], genomic mutations 
will affect the protein function and structure[2]. Therefore, 
proteins affected by the mutations will provide more 
insight into cancer genesis[3]. Single nucleotide 
polymorphism (SNP) is the most common mutation type 
in genomic mutation datasets. Mutation data analysis 
requires a sequential process in order to map different data 
to their genomic and proteomic positions. 
 Furthermore, some mutated genes will trigger 
mutations in other genes[4]. Cancers occur due to 
accumulating such mutations in the genome. Importance 
of studying the patterns in the mutations, is to understand 
the mutation/gene/protein level combinations in cancers. 
Following study focused on understanding the human 
nervous system cancer gene level patterns.  
 Identifying association rule is a machine learning 
technique to understand significant relationships between 
features in a dataset[5][6]. This technique will perform 
better with large datasets. Due to the above reason this 
study considered fifteen types of human nervous system 
cancers. We have considered relationship identification 
technique (association rules) which evaluate the 
interestingness of gene combinations. 

2. Objectives 

Main objective of the study is to identify the human 
nervous system cancer related gene combination which 
has relationship between each other in biological context. 
In order to achieve the main objective there are three sub 
objectives. First objective is to get all datasets into 
common platform. Second objective is to identify 
significant mutation positions in the human nervous 
system cancer datasets. Generating workflow for mutation 
analysis is another parallel objective of this research. Final 
objective of the research is to identify and validate the 
gene combinations in human nervous system cancers 
which have biological relatedness evidence.    

3. Methodology 

All datasets were downloaded from freely available 
cBioPortal (July 2018 version v1.13.2[7]). Table 1 shows 
the dataset details used for the analysis. These datasets 
annotated with old genomic version (GRCh37) in genomic 
level and protein level. We have used 15 cancer projects, 
11 from central nervous system and 4 from the peripheral 
nervous system. Each donor/patient is different however 
there are similar mutations in different projects. 
 Initial step of the analysis is data purification. Data 
were generated in Genome Reference Consortium Human 
Build 37 (GRCh37). We attempted to predict variant 
effect prediction with the old version. However, we found 
several errors while predicting the effect. Therefore, first 
step of the analysis begins with data conversion to the 
latest version. There were two methods for data 
conversion. First method was to convert old genome 
position to new protein positions. Second method was 
converting old protein position to new protein position.  
 We considered both conversion methods and analyse 
the advantages and disadvantages of the two processes. 
We have used VEP[8] genomic reference conversion tool 
for genomic position conversion [9] BISQUE [10] and 
UNIPROT tool [11] for protein position conversion. 
REST API in Ensemble database was used for the 
Ensemble ID conversion. We have considered the 
Ensemble IDs and UNIPROT Ids as protein identifiers. 
However, many tools prefer the UNIPROT IDs for data 
annotation. We considered both methods and selected the 
most effective methods which gives minimum errors in 
data conversion. 
 We filtered single nucleotide polymorphisms for 
further analysis. In order to get the mutation impact 
Ensemble Variant Effect Prediction Tool [8] was used. 
Data matrix were generated with R package. Furthermore, 
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we used Reactome pathway tool [12] to map biological 
functions for each mutated proteins. All these methods 
required batch processing hence all datasets have large 
mutation list to annotate.  
In the analysis, we have identified significant changes in 
genomic positions after genome build conversion and we 
will discuss them under results and discussion section. The 
table 1 shows projects we considered and their respective 
single nucleotide polymorphism percentage. According to 
the analysis, the majority of reported mutations in all 
datasets are SNPs. Furthermore, we generated a large 
dataset which consisted with 15 different tumor projects 
and 100141  mutation entries. We filtered all protein 
effecting and genomic changes for association rule 
generation. 
 In the association rule identification we considered 
mutational level association rules, gene level association 
rules and protein level association rules by using arules 

algorithm[5]. In mutational level no association rules we 
generated since mutational diversification was high. 
Furthermore, protein level association rules not generated 
because of protein isoform impact. Gene level association 
rules were generated and these rules were validated with 
biological evidences. To the above mention task we have 
used REACTOME[13] tool, PSICQUIC REST API and 
GENEMANIA tool[14]. These biological evidences we 
considered based on physical interactions, co-expression 
interactions, co-localization interactions, biological 
pathways interactions, predicted interactions, genetic 
interactions and shared protein domain interactions. We 
have visualize the interactions among genes in association 
rules via using REACTOME tool, GENEMANIA tool and 
R network analysis package. Finally, we have generated 
reusable workflow for association rule identification for 
genomic mutation. This method can be used to analyse 
other types of cancer genomic mutation. 

 

TABLE 3: DATASET DETAILS 

 Type Dataset Mutation Patients SNP SNP/Mutation % 

Peripheral nervous system  Mpnst_mskcc 4582 15 3767 82.21 

Nbl_amc_2012 568 73 506 89.08 

Nbl_ucologne_2015 920 56 818 88.91 

Nbl_target_2018_pub 1035 372 1035 100 

Central Nervous system Pcpg_tcga 4662 184 3823 82 

Past_dkfz_heidelberg_2013 236 78 217 91.95 

Lgg_tcga_pan_can_atlas_2018 39299 510 37481 95.37 

Mbl_sickkids_2016 4779 44 4581 95.86 

Mbl_icgc 1059 114 1018 96.13 

mbl_pcgp 558 37 536 96.06 

Mbl_broad_2012 1808 92 1696 93.81 

Odg_msk_2017 281 22 229 81.49 

Gbm_tcga 22073 290 20949 94.91 

Lgg_tcga 9885 286 9228 93.35 

Lgg_ucsf_2014 15155 61 14804 97.68 

4. Results and Discussion 

4.1. Basic Analysis and Statistics 

Dataset consisted with 15 projects and 4 of the projects 
comes under peripheral tumours and 11 are from central 
nervous system cancers. We merged all mutation projects 
into single project for the analysis. There are 106900 
variants and 2234 donors in the merged full dataset. 
Dataset was annotated in GRCh37 (old genome version).  

4.2. Genome Build Conversion 

Initial data file have old version genomic position and 
their respective protein mutation positions. We performed 
basic analysis in order to understand the version 
compatibility of datasets. We have tested two methods to 
identify protein position changes. Figure 1 shows the 
process of analysis. 
 In the method 1, we have tried to convert protein 
positions directly. In the analysis we have faced three 
major issues. Some protein positions do not provide 
genomic positions. Due to the above reason, we could not 
find entries for protein such as Q9BX63 position 990. 
Secondly, there were protein position mapped with 
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different chromosomes genomic positions (eg: P62805-
1,6,12 chromosomes and P84243-1, 17 chromosomes). 
According to the analysis, we have found out these 
proteins synthesised in different chromosome locations 
and they are histone proteins. Third problem was filtering 
SNP mutations from protein changes. Protein positions 
such as Q9HC77:1235 are occurred due to intron regions 
deletion or insertions. Therefore, they are not single 
nucleotide polymorphisms in genomic level. To solve the 
above issues, we used the method 2 which had an 
intermediate steps. Even though, method 2 has more steps 

than method 1, it will reduce the data loss during data 
annotation and enrichment. 
 Initially we filtered the SNP mutations for all datasets 
and converted to the new genome build. Some genome 
positions in 37 build are not available in the 38 genome 
build. This may be due to the assembly errors between the 
versions. Data loss in the conversion is given below (Table 
2). However, it is concluded that from the above 
mentioned methods, Method 2 is more effective. 
Therefore, we integrated the method 2 into the workflow. 
 

 
Fig 14 Data conversion workflow of the research 

TABLE 4 DATA LOSS IN GENOMIC BUILD VERSION CONVERSION 

Project Input 
Outpu
t 

Data loss 
% 

Mpnst_mskcc 3427 3301 3.676685 

Nbl_amc_2012 502 501 0.199203 

Nbl_ucologne_2015 816 812 0.490196 

Nbl_target_2018_pub 973 944 2.980473 

Pcpg_tcga 3371 3332 1.156927 

Past_dkfz_heidelberg_2013 211 211 0 
Lgg_tcga_pan_can_atlas_20
18 

3671
0 36572 0.375919 

Mbl_sickkids_2016 4553 4542 0.241599 

Mbl_icgc 1001 998 0.2997 

Mbl_pcgp 532 530 0.37594 

Mbl_broad_2012 1687 1684 0.17783 

Odg_msk_2017 173 173 0 

Gbm_tcga 
2040
7 20332 0.367521 

Lgg_tcga 8850 8818 0.361582 

Lgg_ucsf_2014 
1400
3 13961 0.299936 

4.3. Mutation Enrichment 

After the data conversion step, genome mapped dataset 
was used for the mutation impact annotation. We have 
used Variant  Effect Prediction tool (VEP) [15] for the 
following process. This process acquired the longest time 
in the workflow. We compared web portal and REST API 
for the analysis. Web portal has taken more time compared 
to REST API given by VEP tool. Figure 2 shows the visual 
representation of a project considered in the analysis. 
Similar to this project, missense variants are the highest 
mutation type in all projects. 
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Fig 15 Variant Effect Prediction tool output for brain gbm tcga dataset 

From the VEP tools we can annotate the nomenclature, 
transcript, gene name, protein id, protein change impact, 
literature regarding the mutation, COSMIC id and exon 
number. One genomic mutation may alter different 
transcript and different protein isoforms. Due to the above 
reason, each genomic position should be annotate with its' 
respective transcripts and protein isoform ids.  
 VEP tools provide each of the affected transcript 
(ENST). We have identified 1106362 mutations which 
alter protein sequences however these entries are not 
unique since one mutation position can be altered in 
different patients. In order to filter the effect of the 
mutations we considered the protein alteration, miner 
allele frequency, related publications and predicted 
protein impact score. For predicting the protein impact we 
considered the SIFT and Polyphen scores. For these 
annotation we have used different databases such as 
DBSNP[16], Clinvar[17], UNIPROT[18]. These features 
we selected based on ACMG guidelines for mutation 

impact predictions [19]. We filtered protein altering 
mutation after considering above information annotated to 
each mutation. 

4.4. Association Rules 

We analysed mutational level, gene level and protein level 
association rules from the dataset we filtered. In the 
mutational level, diversity of genomic position was high. 
Figure 3 shows the heatmap drawn for the mutation to 
patient matrix. According to the results, there is no 
significant similarity among patients based on genomic 
level. There are  no clear clusters neither a hierarchy in 
genomic level. Thus, there are no association rules in the 
genomic mutation level. There are different isoforms for a 
single protein. Due to that reason there are redundancy in 
association rules in protein level. 
 

 

Fig 16 Mutation Heatmap for genomic level mutation vs patients 
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We have generated 23 association rules for gene level. 
Table 3 shows the results of association rules and their 
confidence level. According to the results, Highest 
confident rules is ATRX, TP53> IDH1. If there are 
mutations in ATRX and TP53 genes in a patient's cancer 
there is a 94.78% confidence that IDH1 also mutated in 
the patient cancer cells. Confidence is an indication of how 
often the rule has been found to be true in the dataset. 
However, Support for this is 5.56% which is low. Support 
is an indication of how frequently the gene set appears in 
the dataset. According to the results, even though 
confidence is high diversity of the gene combinations are 
high. 

Furthermore, According to the statistics in genomic SNP 
mutation IDH1 and IDH2 gene are altered significantly 
among patients. When investigating the insight of 
Isocitrate dehydrogenases (IDH1) and cancer, there are 
several biological proven evidence that mutant IDH1 
R132 and IDH2 R172 are used and targeting therapy [20]. 
Therefore, IDH1 mutation can be considered as an 
advantage in cancer treatment. According to the results we 
can see association rules which has IDH1 can be treated as 
therapy target association rules. On the other hand, most 
of the rules have IDH1 alteration. This mutation may 
misguide the association rule results since it always have 
the high frequency among patients.  

 

TABLE 5 ASSOCIATION RULES FOR GENES 

No. Left hand side of the rule rhs Support Confidence Lift Count 
(1) ATRX,TP53  IDH1 0.055584 0.947826 2.614187 109 
(2) SMARCA4,TP53 IDH1 0.012239 0.923077 2.545927 24 
(3) CIC IDH1 0.048445 0.913462 2.519407 95 
(4) FUBP1 IDH1 0.010709 0.913044 2.518254 21 
(5) APOB,TP53 IDH1 0.010199 0.909091 2.507352 20 
(6) ATRX IDH1 0.065273 0.882759 2.434725 128 
(7) ATRX,IDH1 TP53 0.055584 0.851563 3.407988 109 
(8) NOTCH1 IDH1 0.018358 0.837209 2.309096 36 
(9) ATRX,TTN IDH1 0.010199 0.833333 2.298406 20 
(10) TP53 IDH1 0.198878 0.795918 2.195212 390 
(11) ATRX TP53 0.058644 0.793103 3.174032 115 
(12) ARID1A IDH1 0.012239 0.774194 2.135293 24 
(13) SMARCA4 IDH1 0.020398 0.727273 2.005882 40 
(14) MUC16,TP53 IDH1 0.016318 0.727273 2.005882 32 
(15) APOB,IDH1 TP53 0.010199 0.714286 2.858601 20 
(16) TP53,TTN IDH1 0.023457 0.657143 1.812457 46 
(17) APOB IDH1 0.014278 0.636364 1.755146 28 
(18) IDH1,MUC16 TP53 0.016318 0.627451 2.511084 32 
(19) IDH1,TTN TP53 0.023457 0.613333 2.454585 46 
(20) IDH1,SMARCA4 TP53 0.012239 0.6 2.401224 24 
(21) IDH1 TP53 0.198878 0.548523 2.195212 390 
(22) LRP2 TP53 0.011729 0.511111 2.045488 23 
(23) APOB TP53 0.011219 0.5 2.00102 22 

4.5. Validation Association Rules 

After generating the association rules we have validated 
the results with biological evidences. We have validated 
each association rules by using PSICQUIC tool (Platform 
which combines biological interaction evidence 
databases) which has combination of protein-protein and 
gene interactions. Since PSICQUIC provides literature 
evidence regarding the association between two genes, 
association rules that computationally generated from the 

research can be proven from biological evidence.  Figure 
4 shown below is the PSICQUIC output of 
SMARCA4,TP53> IDH1 association rules. According to 
the results there is a direct association between TP53 and 
SMARCA4 however, there are no biological evidence 
shown to prove between SMARCA4 and IDH1 or TP53 
and IDH1. Furthermore, most of the association rules 
could not validated via this method since all genes in a 
particular rule will not interact directly. However, in three 
gene combinations at least two genes interact directly. We 
have consider the interaction confidence score in order to 
confirm the interaction. Confidence does not show the 
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interaction robustness between genes therefore it can only 
explain how confidence the gene interaction is validated 
in research domain.  
 

 

Fig 17 Screenshot of the RESTAPI output of PSICQUIC 

 
As the next step we consider the 1st neighbour linkage for 
the gene combination. Human Interactome has published 
11,999 proteins and interactions 74,771 as at 31 June 
2018. Human Interactome was generated based on 
literature and predicted protein-protein interactions. We 
considered the human protein interactome as a network 
and calculated shortest paths for each gene combinations. 
According to the results, it has shown that many links 
between two genes may be not direct interaction but 1st or 

2nd neighbour interactions. Figure 5 shown below is the 
GENEMANIA network visualization for ATRX,TTN> 
IDH1 association rule. According to the results shown 
here, IDH1 is having interaction with ATRX and TTN 
through IDH2 and VIM. However, these interactions 
should be further investigated since they should be in the 
same pathway or share common attributes in co-
expression level.  

 

 

Fig 18 Association rule ATRX,TTN> IDH1 visualization with GENEMANIA tool 

We considered the reactome pathways to track the 
relationship between mutations and biological impact. 

Initially, we mapped genes to their respective biological 
pathways. Most of the mutated genes are affecting signal 
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transduction pathway. Figure 6 shows the affected 
biological pathways and mutation frequencies.  
 

 

Fig 19 Mutations vs affecting reactome pathways 

We visualized the association rules based on reactome 
pathways. Reactome pathways have a hierarchy which 
connects main reacotme pathways to sub level reactome 
pathways. We have designed a panel to visualize the 
hierarchy of the reactome pathways affected by particular 
association rule. Figure 7 highlighted the association rule 

genes and reactome pathways which combine them. 
According to the results, many association rules have 
common reactome in higher level however, all the genes 
in an association rule do not work under one reactome 
pathway. 

 

 

Fig 20 Association rule SMARCA4,TP53> IDH1 visualization with reactome pathway interactions 

We have omitted the two gene combinations since they 
have lower impact as a combination. Moreover, some 
association rules gene combinations are repetitive if all 
genes considered as a single group. (eg: 

SMARCA4,TP53> IDH1 and SMARCA4,IDH1> TP53) 
These combinations are validated as a single case. 
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5. Conclusions 

From the following study we can conclude SNP effect 
prediction required combination of tools for effective data 
annotation. There are main three steps of the mutation 
effect prediction. Initially all mutations should be 
converted to the latest genome build. Secondly, mutation 
should be annotated with genomic data. Finally genomic 
position which alter the proteins should be annotated with 
protein data. We have generated a reusable effective 
workflow for genomic data annotation and data mining. 
Mainly we proved ATRX,TP53>IDH1, TP53,TTN>IDH1  
and SMARCA4,TP53> IDH1 association rules with 
biological evidences. In the data validation step we have 
considered direct association and indirect association 
between genes. Moreover, computationally captured rules 
were validated with biological evidences via different 
databases. These validation process was designed as a 
workflow which can be reusable. For association rule 
visualization, we have designed a panel which explains the 
interaction and hierarchy of the reactome pathways. As 
future work, we need to design more insightful association 
rules by combining other cancer types. 
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