
Sri Lanka Association for Artificial Intelligence 16th Annual Sessions

SLAAI - International Conference on Artificial Intelligence 01st December 2020

7

On Computing Memory as a Result of Processing

Chinthanie Weerakoon1, Asoka Karunananda2, Naomal Dias3
1Department of Statistics & Computer Science, University of Kelaniya, Dalugama, Sri Lanka.

 2Department of Computational Mathematics, University of Moratuwa, Katubedda, Sri Lanka.
3Department of Computer Systems Engineering, University of Kelaniya, Dalugama, Sri Lanka.

email : 1chinthanie@kln.ac.lk, 2asokakaru@uom.lk, 3ngjdias@kln.ac.lk

Abstract—It was difficult to find a computing model that

has been constructed by imitating an Eastern-Philosophical-

Approach-based human mind model to improve the

computational efficiency. In this context, introducing a

computing model that displays the features of the human

mind with its evolving memory and has the ability to

improve the processing power in subsequent program

execution cycles, was a great research challenge. The Six-

state Continuous Processing Model was proposed to fill this

gap. This paper presents an extended research work on this

model. Further, this new model has been compared with

different computing models. As the basis for these

comparisons, it takes the implementation and the execution

of Quicksort algorithm. In this regard, each of these existing

computing models have used different empirical settings.

Therefore, the proposed model was compared with these

computing models by using different experimental setups

and conducting the experiments accordingly and separately.

When conducting the experiments, it could identify different

ranges of inputs, and experimental setups that enable this

model to show better performance than the currently

existing models. In some experimental scenarios, the

performance improvement of the proposed model was more

than 80% with compared to the other computing models.

Keywords—Continuous Processing; Evolving Memory;

Smaller Tactics Memory; Computational Efficiency; Human

Memory; Conditional Phenomena; Memory as a Result of

Processing.

I. INTRODUCTION

Von-Neumann introduced the computer architecture
where memory is separated from the processor [1]. This
architecture has been practiced in developing computers
with various memory power and processing power.
However, the demand for computers with high memory
and processing power remains a challenge. In this context,
while many hardware solutions including high speed
memories (RAM, Cache [2], Registers) and processors
(multi cores, GPU) [3] have been introduced, the
development of new software technologies to use power of
such hardware has been rather insignificant, as non of
these software level introductions are still efficient to the
expectation[4]. Therefore, finding a new computing model
to enhance the computational efficiency has been a
continuous research challenge.

This research has identified that the human mind is still
the best computer which can generate better solutions over
subsequent execution cycles of same program in a shorter
period [5]. This has not been the case in computation on
Von-Neumann machine. The study in [5] also revealed that
mind is quite different from Von-Neumann computer,
because the mind has no separate units as memory and
processor, but memory is a result of continuous processing

[6] in the mind. Mind operates as a continuous flow of
thoughts [7] pertaining to an input or conditions. Thought
flows can occur with respect to inputs coming from five
sensors as well as from the mind itself [7]. The way mind
react on an input is dependent on the past state of the mind.
For instance, reactions to similar type of inputs inertia will
be developed. This memory evolves over the cycles and
aids the processing efficiency and accuracy. Therefore, as
inspired from the Eastern Philosophical Approach (EPA)
[38], we postulate that a computer with evolving
memory[8] can be modelled by developing a processing
model leading to software solution for improving
computational efficiency and accuracy[5].

Knowing the fact that processing speed is dependent on
the states and actions to manage the processors, we have
critically studied various memory and processing models
in both the hardware and softtware level. Most of these
introductions were based on the memory and the processor
sepretation. When it came to hardware level, there were
different processor and memory models and connective
mechanisms that were presented to improve computing
power. In fact, different processors with different speedups
have been invented with the time. For example, so far the
world’s fastest processor [9] is Intel’s core i9 and also it is
the best gaming processor [10]. Intel could do this, because
of the new chipset. i.e. X299 [9]. Further, it has been
expanded its processing power from eight core i9-9900 to
eighteen core i9-9980XE [9]. These were achieved through
different hardware formations such as increasing the
dencity and reducing the size of chips [11]. Further, to
support processing, various memory models were
introduced, such as RAM, SRAM, DRAM, SDRAM.
However, together with the bandwidth-wall, the disparity
of speed between the CPU and the memory that is called as
the memory-wall [12] degrades the performance of
computing. Therefore, the separation between the memory
and the processing is evident and this separation is one of
the major obstacle in performance gaining in the computer
at hardware level. Then, the other obstacles in gaining the
performance of the computer is insufficient software level
improvements to cope with underline architecture, and
their own separated memory and processing models.

Further, this study revealed that, the most of the
existing software solutions were mainly focused on
providing solutions for the real world problems. These
problems are arising from the natural systems with large
number of entities that are connected each other and
operated in distributed or parallel manner in the
environments, which is changing dynamically. However,
providing quality solutions more efficiently over
subsequent generations of system executions were
considered minimally. Those would be rather the

Sri Lanka Association for Artificial Intelligence 16th Annual Sessions

SLAAI - International Conference on Artificial Intelligence 01st December 2020

8

modelling of real world systems and finding best solutions,
where the focus was sometimes bit deviated from
enhancing the computational efficiency. This research has
narrowed down its literature review to analyze the memory
and processing in computing models such as Incremental
Computing, Genetic Programming, and Multi-Agent
systems. Multi Agent Systems (MAS) has been involved
in problem solving by sending messages among a group of
agents [13] having inspirations from the behavior of
natural complex organizations [14] such as ant colonies,
fish schools, and bee colonies. MAS offered a novel model
for distributed and parallel computing on VNA and can
yield emergent solutions [15]. However, when the certain
applications of MAS are dealing with large groups of
agents working together in the same stage, the efficiency
improvement in such system cannot be expected [14]. In
fact, the concepts such as logical agents[16], long short
term memories and reinforcement learning[17], were quite
impressive. Many of those had insights from the human
mind according to the theories introduced in Bartlett’s
Remembering [18], constructive memory [19], and
Atkinson-Shiffrin [20] and the Baddeley [21] models with
a western philosophical view. Meanwhile, the foundation
of the evolutionary computing was laid by the Genetic
Algorithms (GA), having inspirations from the Darwinian
theory of evolution [22]. There are many aspects in the
field of computing that are benefited from GA. For
example, for CPU scheduling GA has been applied [23] in
order to maximize CPU throughput or utilization [24] or
optimize the waiting time [25]. Further, over generations
of executions, the GA can produce better quality solutions,
although the GA consumed memory and CPU in a
considerable level. The Incremental computing was an
approach in modeling systems with the incremental and
dynamic slight changes in input data [26]. There, the
memory management [27] was done through the graphs
and memorization [28]. Self-adjusting computing [29] was
one of the branches in incremental computing. Further,
there were different adaptive algorithms that have been
applied in order to speed up the computing [30], even
using GA [31]. In some cases, it has also been used
different program transformation [32] techniques to enable
adaptability and achieve speeding up. Further, it has been
discussed memory and processing in parallel computing
and neural computing also.

Finally, it has been come up with six-state processing
model (SSPM) to develop the said evolvable memory. This
processing model involves a set of special actions together
with an extended Ready state [33] than traditional ready
state, and a new Sleep state and a Terminate state that are
deviated from traditional Exit state. Identification of new
states and actions are based on the EPA. The SSPM has
been formally validated for Turing Machine compatibility
[37] and tested for some real-world problem solving. The
results show that new processor model has been able to aid
evolution of the memory and improved efficiency and
accuracy in processing, with continuous processing. This
model has been used to customize several existing
programs such as Fraction Calculator (FC), QuickSort, and
Quadretic Equation Solver (QES) introducing SSPM-FC,
SSPM Sorting (SSPM Insertion, and SSPM-S-Equal), and
SSPM-QES, in which the new model is incorporated, has
been executed for many rounds with sets of inputs.
Meanwhile, the time taken for the computation of each

input has been recorded in nanoseconds. All the cases were
tested to check whether an improvement has gained by
creating modules for frequent operations over program
execution cycles. The time values were collected for the
execution of each equation in the same set of equation
before and after do the modification. Then, the paired
samples of time values were statistically analyzed with the
paired-t-test after checking the samples for the
applicability of the test in the samples. Finally, with the
SSPM-FC, SSPM-QES, and SSPM-S-Equal, it could prove
that the system gain improvement over generations of
program executions by generating modules for frequent
operations. This paper focuses on the work related to
SSPM-Sorting.

The rest of the article is organized as below. The
Section 2 explains th proposed model, whereas the Section
3 discusses the research methodology, while Section 4
reports the results and discusses the findings. Finally, the
last section concludes the work.

II. PROPOSED MODEL

This research hypothesized that the processing power
of the computer can be enhanced with the support of a
smaller tactics memory, which improves as a result of
continuous processing. This section proposed the six-state
continuous processing model, and it is the core of this
thesis. The model is abbreviated as SSPM. The SSPM
system initially begins by an internal process. Then, the
particular operation for the process has been arbitrarily
picked out from the bunch of operations that are stored in
the initial smaller tactics memory. Further, the instructions
saved in the knowledgebase can be executed through this
smaller memory. The system shifts to the internal mode
once an internal input is entered. The system can receive
an external input only when the present inner process
sleeps. After moving to the external mode, if there is no
external input, the system can move back to the inner
process. However, if there is no external input, the inner
process can be proceeded with the actions linked to the
latest external input. The system conducts ongoing
processing in such a manner.

The model accomplishes a series of tasks, during the
ongoing processing over generations. Particularly, it
identifies the inputs and operations, adds library files for
new operations, classifies appropriate operations with
respective information and directives, prioritizes the
operations relevantly, creates recurrently arising operating
modules and deletes needless or wasteful modules and
directives as well as the useless information. Such a way,
the corresponding entries develop and organizes the
smaller memory. In addition to that, these actions under the
above mentioned two process categories can occur in a one
stream. Moreover, the tasks, namely, deletion,
classification, additions, and prioritization can be
accumulated under the general term 'Organizing'.
Consequently, the system is gaining improvements by
iterating this organizing job. Depending on the process
category, the results of each process can also be generated
externally or internally.

The newly presented computing model comprises of
six states, specifically "New", "Ready", "Running",
"Blocked", "Sleep", and "Terminate” as shown in figure 1.

Sri Lanka Association for Artificial Intelligence 16th Annual Sessions

SLAAI - International Conference on Artificial Intelligence 01st December 2020

9

At first, neither the recently generated processes were
organized nor activated those processes were in the ‘New’
state. Once the processes were organized and activated,
those were moved to the ‘Ready’ state. Then, a process,
which was running on the processor was in the ‘Running’
state. A process was switched to the ‘Sleep’ state after
finishing the execution enabling some other process to be
initiated, executed or continued. Furthermore, if a process
had to wait until a specific task to be completed, then the
process was in ‘Blocked’ state. Finally, if a process was
neither necessary to be modified nor requires any
execution can be ended, and the state can be updated as
‘Terminate’. The states and movements between the states
in the novel computing model are perceptibly illustrated in
the figure 1. Introducing this model, it was expected to
enhance the processing in the system and the memory
process using a set of tactics maintaining the continuity.
The coming section describes the exhibited features of the
suggested model.

III. RESEARCH METHOD

This research was conducted to discover a new
computing model to enhance the processing power of the
computer. There, the characteristics of the human mind
was incarnated in to a new processing model exploiting the
EPA. There the mind a continuous flow of thoughts [34].
The continuity of this processing is maintained by several
factors such as the inputs receive through physical five
sense doors (external inputs), the inputs internally generate
in the mind door (internal inputs), and a set of causal
relations [5]. All the time, the internal inputs are generated
in relation to and are affected by the prior external or
internal inputs. In addition to that, the repeated processing
on the same set of inputs, improve the speed, quality and
the accuracy of processing [7]. There, the processing is not
separated from the memory. The memory is a result of
continuous processing that arise as per the conditions.
Further, starting from an initial setup, the smaller tactics
memory has gradually improved and organized through
this continuous processing or practice. The knowledge and
instruction entities entered in as any sort of inputs or
instructions, are labeled, in the way, which one can
identify, describe, relate or retrieve back the knowledge
entities and the results of relevant computations. Moreover,
a set of tactics such as pattern identification, classification,
and prioritization has been used.

An inspirational example that has displayed the nature
of the human mind is discussed next. Let’s think about the
two cases, where a student, and a senior professor who are
preparing for and do their presentations. When, the student
does the presentation, in most of the cases, he needs
external aids such as power point slides to drive through
his own knowledgebase. Through series of refinements, he
can well organize his slides using set of tactics and
improve his own ability to do the presentation accessing
his knowledgebase. In the case of a senior professor, he
has such a well-organized smaller tactics memory, which
enables him to clearly conduct his presentation accessing
his larger knowledgebase. This ability and the smaller
tactics memory has been improved throughout the years.
All such skilled workers do in the same way. Therefore,
one can believe the existence of a smaller tactics memory
in the human mind. This smaller tactics memory gradually
updates through continuous processing, and allows access
to the large knowledgebase, is a part of processing, and
improves the processing back. Again, it is obvious that this
smaller tactics memory has been different from the smaller
memories of the current computer such as caches or
registers [19]. Through this continuous processing, human
can improve the processing power, accuracy and the
quality of the work they do. Then, this would be a new
approach for computing to improve computational
efficiency. This processing model can improve the
processing power, quality, and accuracy of the
computation done by the computer with the support of an
evolving smaller memory, which is a result of continuous
processing.

In software level, it is an evident fact that the efficiency
of processing hugely affected by the actions and the
corresponding states in the process flow. After critically
studying memory and processing models as mentioned
earlier, this research has introduced SSPM [5] to produce
the conditionally evolving smaller memory. The actions,
the constituent of the transitions of the new processing
model were formed by utilizing the set of tactics have been
derived from a set of fifteen causal relations, namely,
Object, Root, Co-Nascence, Association, Mutuality, Pre-
Dominance, Presence, Support, Pre-Nascence, Proximity,
Karma, Repetition, Disappearance, Post-Nascence, Karma-
Result from twenty-four causal relations [5].

This model with the above characteristics and the
actions has been incorporated in to a Fraction Calculator
(SSPM-FC) [5], quicksort algorithm (SSPM Sorting –
particularly SSPM Insertion, and SSPM-S-Equal),
quadratic equation solver (SSPM-QES), and in a simulated
process scheduling program (SSPM-PS). However, it has
been done a great work on FC as it has matched better with
these conditions and circumstances of the proposed model
than the other systems. SSPM-Sorting allowed to compare
the model with existing computing models. The
implementation of this SSPM embedded sorting program
was based on Quicksort. The Quicksort is highly efficient
algorithm for sorting and is based on partitioning the data
set into two subsets. There, the original list of elements is
divided into two sub lists, one of which holds values lower
than a selected particular value, the pivot, depending on
which the division is made and the other list holds values
higher than the pivot value.

Figure 11 Six-state Continuous Processing Model (SSPM)

New

Terminate

Ready

Create the

Process

Organize,

Activate

No Further

Improvements

Sleep

Organize,

Activate

 Dispatch

Blocked

Release

Null

Running

Time

-out

 Event

Wait

Event

Occurs

Organize

Sri Lanka Association for Artificial Intelligence 16th Annual Sessions

SLAAI - International Conference on Artificial Intelligence 01st December 2020

10

Further, it was concentrated on comparing this system
with the quicksort programs developed in some other
computing models such as parallel computing,
ADAPTON, Self-Adjusting computing, Dynamically
Tuned Library and Evolutionary computing. This
development process was also similar to that of the SSPM-
FC [5], except its Input-Content Analyzer, internal input
creation and the calculation. However, it had to do
comparisons with the lists of larger number of inputs, it has
been used internal process case more. Specially, in the
scenario, which was tried to compare the model with the
Dynamically Tuned library and the Evolutionary
computing, the standard deviation and the distribution of
data were also mattered. Therefore, when creating the
internal scenario rather than creating lists with random
numbers it was required to write the code so to create
normally distributed data with fixed standard deviation. In
contrast to the FC and QES, The SSPM-Sorting program
has been implemented so to support all the input patterns

mentioned below. Further, this had the techniques such as
Insert for IP1, Equal for IP4, delete for IP3, and sort for
IP2.

The overall hypothesis of this research has reduced to
the following words.

The hypothesis, which was tested in this scenario is;

H0: There is no difference between the means of time
values before and after organizing the tactics memory by
applying modifications through continuous processing.

 (No Performance Improvement over program

Table 1 Comparison Tables (a) Average run times for different thresholds and number of elements for parallel QS (Source:

[35]), (b) Relevantly tested SSPM, sorting list results with original QS, when there are 1, half and all new, all equal elements

than/to previous list in SSPM

(a) No of elements T=1000

(ms)

T=5000

(ms)

T=50000

(ms)

10 0.01 0 0.01 0001

100 0.01 0.020001 0.050004

1000 0.250016 0.270011 0.260018

10000 2.010118 2.880166 3.060169

25000 5.380318 6.120344 9.15052

50000 11.36065 11.320644 19.61112

75000 18.14103 18.251045 28.60164

100000 24.91142 22.591294 34.19196

150000 36.41208 34.551976 46.99269

(b) No of

Elements

QS (ms)

(Original)

SSPM (Ins)

Sorting (ms)

(New-1)

SSPM (Ins)

Sorting (ms)

(New-All)

SSPM (Ins)

Sorting (ms)

(New-Half)

SSPM (Equ)

Sorting (ms)

10 0.066632 0.018038 0.038061 0.039192 0.003218

100 0.539753 0.07334 0.348982 0.243148 0.002344

1000 3.739901 1.930715 3.801648 2.393156 0.013139

10000 55.54588 170.6803 30.75075 58.83381 0.0598

25000 110.9843 235.1399 105.149 467.4121 0.336187

50000 2.85E+08 9.76E+08 260.1235 1514.95 0.542807

75000 467.8586 2011.655 449.4495 3625.402 0.597209

100000 678.7099 4018.923 719.3369 7379.43 1.139867

150000 1534.874 8671.315 1338.664 16466.74 1.436503

Sri Lanka Association for Artificial Intelligence 16th Annual Sessions

SLAAI - International Conference on Artificial Intelligence 01st December 2020

11

execution cycles) (𝐻0: 𝜇𝐷 =𝑑0, 𝑑0=0)

H1: The mean value of the time values collected before
organizing memory is greater than the mean value of the
time values collected after organizing memory.

 (Performance has improved over program
execution cycles) (𝐻1: 𝜇𝐷 >𝑑0, 𝑑0=0)

For each of the sub scenarios in testing of SSPM-
Sorting, 75 lists of 100 integers in-between 0 and 1000
have been randomly generated. For examples, to check
InsCalcModule, a set of 75 lists of 100 integers have been
used before and after create the module. Then, those list
have been sorted before the modification and collected the
time taken by each expression for the execution in Nano
seconds. In the same way, after the modification, the time
values have been collected for the same set of expressions
in Nano seconds. This collection process has been
conducted in subsequent sorting cycles. It is an important
fact to remind that the entire processing model in the above
mentioned programs are managed through a smaller
memory with the set of tactics. Finally, all these were
tested with many examples and evaluated. The next section
has briefly mentioned the respective testing, results and
comparisons that have been taken place.

IV. RESULTS AND DISCUSSION

By applying paired-t test with 99% confidence level
under the Testing Scenario 1 and 95% confidence interval
under Testing Scenario 2, it has been able to prove that by
customizing the FC with the proposed continuous
processing model, helps to improve the performance of an
FC, when executes over the generations. Further, it could
prove that the SSPM-QES can gain improvement over
subsequent execution cycles, similarly applying paired-t
test with 95% confidence interval.

The program SSPM-Sorting was tested under five
testing scenarios. Under the first (SSPM-S-Insertion) and
the second (SSPM-S-Equal), it could prove that the system
can gain improvement over consecutive program
executions, by applying paired-t test with 95% confidence
interval as similar to the above. Even though, the SSPM-S-
Equal shows improvement for any total number of
elements in the list, the performance of the SSPM-S-
Insertion depends on the number of new elements and the
total number of elements in the list with compared to the
previous list. Next three testing scenarios were allocated to
compare the model with the parallel computing [35] (Table
1), incremental computing [36] (Table 3), Self-adjusting
computing [29] (Table 4), Dynamically Tuned Library
(DTL) [30] for Sorting and Sorting with Genetic
Algorithmic Approach (GAA) [31] (Table 4). The
respective results are summarized in each section.

A. Compare with Parallel Computing

This section compares the speedup of the SSPM-
Sorting with the speedup of the parallel Quicksort [35].
(Here the speedups are calculated with respect to the
original quicksort algorithm). Here, it has randomly
generated nine lists with the number of elements: 10, 100,
1000, 10000, 25000, 50000, 75000, 100000, and 150000.
Then, the time taken for each sorting has recorded in
milliseconds, before and after the modifications. The
obtained values are recorded as in Table 1.

B. Compare with Self-Adjusting Computing and

Incremental Computing

This This section compares the SSPM sorting with the

Quicksort with self-adjusting computing [29] and the

incremental computing [36]. The testing results obtained

by the respective researchers have been compared here

with the results obtained through executing different

SSPM-Sorting techniques as seen in the tables table 2 and

3.

Case 1: Comparison with Self adjusting sort.

In this scenario, all the tests had used lists with total

number of elements 100,000 as the input and compared

the speedup gained by those compared to the original

quicksort as seen in the table 1.

Table 2 Quicksort with Self-adjusting computing [29] Vs SSPM

sorting

Sorting Technique Size of

the list

Speedup

Quicksort with Self-Adjusting

Computing

1*105 654.06

SSPM-S-Insertion (90% new) 1*105 1.218861

SSPM-S-Insertion (95% new) 1*105 2.288098

SSPM-S-Insertion (100% new) 1*105 2.409908

SSPM-S-Equal 1*105 595.45

Case 2: Comparison with Incremental computing sort.

Under this, it has been considered four approaches, which

have been upgraded with the incremental sorting. Here

also, the size of the lists used consist of 100,000 elements.

In addition to the speedup gained, the utilized maximum

heap size used for the comparison is shown in the table 3

below.

Table 3 Quicksort with ADAPTON [30] with incremental computing

Vs SSPM sorting

Sorting technique Size

of the

list

Speedup Maximum

utilized

heap size

(MB)

Quicksort –

LazyBidirectional-

Eager

1*105 21600 162

Quicksort –

LazyBidirectional-

Lazy

1*105 2020 162

Quicksort –

EagerTotalOrder -

Eager

1*105 245 2680

Quicksort –

EagerTotalOrder -

Lazy

1*105 22.9 2680

Sri Lanka Association for Artificial Intelligence 16th Annual Sessions

SLAAI - International Conference on Artificial Intelligence 01st December 2020

12

SSPM-S-Insertion

(90% new)

1*105 1.218861 2626

SSPM-S-Insertion

(95% new)

1*105 2.288098 3127

SSPM-S-Insertion

(100% new)

1*105 2.409908 1347

SSPM-S-Equal 1*105 595.45 2144

C. Compare with DTL and GAA Sorting

This testing scenario compares the SSPM-Sorting with
the Dynamically Tuned Library (DTL) [30] for Sorting and
Sorting with Genetic Algorithmic Approach (GAA) [31]
was complicated than all the tests conducted so far. The
DTL research suggested that the characteristics of input
data and some architectural features affect the sorting.
Particularly, the distribution of data, standard deviation,
number of elements in the list, size of the cache, size of the
cache line, and number of registers are among the factors.
First, six lists of Normally distributed 2M (M=2^20)
elements have been created. Each list was created so as to
have a single standard deviation (stdv) for all the elements
in each list, where those nine stdvs were {100, 1000,
10000,100000, 1000000, and 10000000}. Same testing
scenario has been conducted in two different computers:
Intel(R) Xeon(R) CPU ES-2623 V3 @ 3.00 GHz with
Turbo Boost up to 2.0GHz with 16GB cache size, 64B
cache line size and 4 registers in SUSE Linux (Server), and
Intel(R) Core i7-8550U 1.8GHz with Turbo Boost up to
4.0GHz with 4608MB cache size, 64B cache line size and
8 registers in Windows 10 operating system (Laptop).
There is an apparent speedup gain in the SSPM-Sorting for
the lists with a standard deviation approximately less than
1000.

Then, again the SSPM-Sorting has been compared with
the different improvements gained by the Quicksort after
applying different adapting techniques through
Dynamically Tuned Library (DTL) and a Genetic
Algorithmic Approach (GAA) for sorting (Gene-Sort) [31]
in an Intel PIII Xeon computer with 512KB cache size in
RedHat 7.3 Operating System as seen in Table 4.

Table 4 Comparisons of SSPM sorting with DTL[30] and GAA [31]

sorting

Sorting Technique Speedup

DTL – Insert Sort at the end 1.1173

DTL – Insert Sort at each partition 1.0465

DTL – Sorting Networks 1.1672

GAA – Gene Sorting 2.5714

SSPM-S-Insertion (90% new) (Server) 3.25556

SSPM-S-Insertion (95% new) (Server) 6.30319

SSPM-S-Insertion (100% new) (Server) 8.63834

SSPM-S-Insertion (90% new) (Laptop) 3.898003

SSPM-S-Insertion (95% new) (Laptop) 7.984114

SSPM-S-Insertion (100% new) (Laptop) 8.559002

SSPM-S-Equal (0% new) (Laptop) 653.64

V. CONCLUSION

The final target of this research was to develop a
continuous processing model to improve the computing
efficiency of the computer that leads to a new theory of
computing. There, the computer memory was modeled as
conditional phenomena, which enhance the efficiency of
continuous processing over program execution cycles.
Further, several real-world processes, which have
exhibited the continuous processing and evolving nature of
the human mind, have rooted the research idea for
improving the computing power. And it was a fantastic
idea. SSPM, the model introduced, consists of three
features, such as two processes (internal and external),
continuous processing, and conditionally evolving
memory. Further, the processing states of the proposed
processing model were new, ready, running, blocked, sleep
and terminate. With these states, set of actions forms the
continuation of processing. Furthermore, the new model is
advanced than the incremental computing, since the new
model refine the entire system through a continuous
process, not only the parts related to the modified input.
On the other hand, ‘Repetition’ and ‘Classification’ can be
shown as the major concepts.

REFERENCES

[1] M. Abd-El-Barr and H. El-Rewini, Fundamentals

of computer organization and architecture.

Hoboken, N.J: Wiley, 2005.

[2] W. J. Starke et al., “The cache and memory

subsystems of the IBM POWER8 processor,” IBM

J. Res. Dev., vol. 59, no. 1, pp. 3:1-3:13, Jan. 2015.

[3] D. A. Patterson and J. L. Hennessy, Computer

organization and design, 5th ed. oxford: Morgan

Kaufmann Publishers, 2014.

[4] G. E. Moore, “Moore’s Law at 40. Chapter 7,” in

Understanding Moore’s Law: Four decades of

innovation edited by D. C. Brock, Philadelphia,

PA.: Chemical Heritage Foundation, 2006, pp. 67–

84.

[5] W. A. C. Weerakoon, A. S. Karunananda, and N.

G. J. Dias, “Six-state Continuous Processing

Model for a New Theory of Computing,” presented

at the SLAAI International Conference on

Artificial Intelligence, University of Moratuwa,

2019, vol. 890, pp. 32–48.

[6] W. A. C. Weerakoon, A. S. Karunananda, and N.

G. J. Dias, “A tactics memory for a new theory of

computing,” 2013, pp. 153–158.

[7] B. Bodhi, Comprehensive Manual of Abhidhamma:

The Psychology of Buddhism (Abhidhammattha

Sangaha). Buddhist Publication Society, 2006.

Sri Lanka Association for Artificial Intelligence 16th Annual Sessions

SLAAI - International Conference on Artificial Intelligence 01st December 2020

13

[8] W. A. C. Weerakoon, A. S. Karunananda, and N.

G. J. Dias, “Conditionally evolving memory for

computers,” 2015, pp. 271–271.

[9] Mihir Patkar, “Intel Core i9 vs. i7 vs. i5: Which

CPU Should You Buy?,” Technology Explained,

06-Dec-2018. [Online]. Available:

https://www.makeuseof.com/tag/intel-core-i9-vs-

i7-vs-i5-cpu/.

[10] Chaim Gartenberg, “Intel announces its latest 9th

Gen chips, including its ‘best gaming processor’

Core i9,” Circuit Breaker, 08-Oct-2018. [Online].

Available:

https://www.theverge.com/2018/10/8/17950968/int

el-9th-gen-core-chips-2018-desktop-processors-8-

core-i9-9900k.

[11] W. Stallings, Computer organization and

architecture: designing for performance. Upper

Saddle Rive, N.J.: Pearson Prentice Hall, 2006.

[12] [12] S. A. McKee and others, “Reflections

on the memory wall.,” in Conf. Computing

Frontiers, 2004, p. 162.

[13] [13] M. J. Wooldridge, An introduction to

multiagent systems, 2nd ed. Chichester, U.K: John

Wiley & Sons, 2009.

[14] N. Siddique and H. Adeli, “Nature Inspired

Computing: An Overview and Some Future

Directions,” Cogn. Comput., vol. 7, no. 6, pp. 706–

714, Dec. 2015.

[15] J. Liu and K. C. Tsui, “Toward nature-inspired

computing,” Commun. ACM, vol. 49, no. 10, pp.

59–64, 2006.

[16] S. Costantini, “Defining and Maintaining Agent’s

Experience in Logical Agents,” in Informal Proc.

of the LPMAS (Logic Programming for Multi-

Agent Systems) Workshop at ICLP 2011, and

CORR Proceedings of LANMR 2011, Latin-

American Conference on NonMonotonic

Reasoning, Mexico, 2011, pp. 151–165.

[17] B. Bakker, “Reinforcement learning with long

short-term memory,” in Advances in neural

information processing systems, 2002, pp. 1475–

1482.

[18] F. C. Bartlett, F. C. Bartlett, and W. Kintsch,

Remembering: A study in experimental and social

psychology, vol. 14. Cambridge University Press,

1995.

[19] D. L. Schacter, “Constructive memory: past and

future,” Dialogues Clin. Neurosci., vol. 14, no. 1,

p. 7, 2012.

[20] Kenneth J. Malmberg, Jeroen G. W. Raaijmakers,

and Richard M. Shiffrin, “50 years of research

sparked by Atkinson and Shiffrin (1968),” Mem.

Cognit., vol. 47, no. 4, pp. 561–574, 2019.

[21] A. Baddeley, “Working memory,” Curr. Biol., vol.

20, no. 4, pp. R136–R140, 2010.

[22] K. A. De Jong, Evolutionary Computaion: A

Unified Approach. London, England: The MIT

Press, Cambridge, Massachusetts, 2006.

[23] M. Sharma, P. Sindhwani, and V. Maheshwari,

“Genetic Algorithm Optimal approach for

Scheduling Processes in Operating System,” Int. J.

Comput. Sci. Netw. Secur., vol. 14, no. 5, pp. 91–

94, 2014.

[24] Sindhwani P. and Wadhwa V., “Genetic algorithm

Approach for Optimal CPU Scheduling,” IJCST,

vol. 2, no. 2, pp. 92–95, Jun. 2011.

[25] M. U. Siregar, “A New Approach to CPU

Scheduling: Genetic Round Robin,” Int. J. Comput.

Appl., vol. 47, no. 19, pp. 18–25, Jun. 2012.

[26] M. Carlsson, “Monads for incremental computing,”

in The seventh ACM SIGPLAN international

conference on Functional programming, 2002, pp.

26–35.

[27] Matthew A. Hammer and Umut A. Acar, “Memory

Management for Self-Adjusting Computation,”

presented at the Proceedings of the the 2008

International Symposium on Memory

Management, Tucson, Arizona, USA, 2008.

[28] U. A. Acar, G. E. Blelloch, and R. Harper,

Selective memoization, vol. 38. ACM, 2003.

[29] U. A. Acar, G. E. Blelloch, M. Blume, R. Happer,

and K. Tangwongsan, “An experimental Analysis

of Self-Adjusting Computation,” ACM Trans.

Program. Lang. Syst., vol. 32, no. 1, 2009.

[30] Xiaoming Li, Maria Jesus Grzaran, and David

Padua, “A dynamically Tuned Sorting Lirary,” Los

Alamitos, Calif., 2004.

[31] Xiaoming Li, Maria Jesus Grzaran, and David

Padua, “Optimizing sorting with genetic

algorithms,” New York, NY, USA., 2005.

[32] Y. A. Liu, “Efficient computation via incremental

computation,” in Pacific-Asia Conf. on Knowledge

Discovery and Data Mining, 1998, vol. 1574, pp.

194–203.

[33] W. A. C. Weerakoon, A. S. Karunananda, and N.

G. J. Dias, “New Processing Model for Operating

Systems,” University of Kelaniya, 2016, p. 29.

[34] W. F. Jayasuriya, The Psychology & Philosophy of

Buddhism. Onalaska, USA: pariyatti, 2016.

[35] A. H. Almutairi and A. H. Alruwaili, “Improving

of Quicksort Algorithm Performance by Sequential

Thread or Parallel Algorithms,” Glob. J. Comput.

Sri Lanka Association for Artificial Intelligence 16th Annual Sessions

SLAAI - International Conference on Artificial Intelligence 01st December 2020

14

Sci. Technol. - Hardw. Comput., vol. 12, no. 10,

2012.

[36] M. A. Hammer, K. Y. Phang, M. Hicks, and J. S.

Foster, “Adapton: Composable, demand-driven

incremental computation,” 2014.

[37] Weerakoon C, Karunananda A, Dias N (2019b)

Formal verification of conditionally evolving

memory. Int J Comput Eng Inf Technol

11(11):243–257

[38] Weerakoon, C., Karunananda, A. & Dias, N.

Human-mind-inspired processing model for

computing. Mind Soc 19, 237–256 (2020).

https://doi.org/10.1007/s11299-020-00236-2

